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THERMAL-HYDRAULICS MODULE, TH-3

HIGH TEMPERATURE GAS-COOLED REACTOR THERMAL-HYDRAULICS

1.0 Object of Module

The object of this module is to present the basir of high

temperature gas-cooled reactor (HTGR) thermal - hydraulics. 7equires

the demonstration of:

How the actual reactor core geometry can be modeled for

simplified thermal-hydraulic analysis.

What information is necessary to characterize thermal-

hydraulic behavior of the reactor.

The development of the theoretical relations that permit

the computation of these thermal-hydraulic characteristics.

The actual calculation of this information for the reactor.

This calculation requires the use of the HTGR Thermal-

Hydraulics Code, the description of which is included in

this module.

The thermal-hydraulic characteristics of the reactor are required

for the determination of:

Fuel integrity

Moderator behavior

Coolant exit conditions

Helium compressor requirements

Temperature feedback for reactor neutronics calculations.
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2.0 Content of the Module

This learning module contains the thermal-hydraulics of high

temperature gas-cooled reactors. Specifically, the module is concerned

with the temperature field, the heat transfer rates and the coolant

pressure drop in typical HTGR fuel assemblies.

As in all of the modules of this series, emphasis is placed on

developing the theory and demonstrating its use with a simplified model.

The model is carefully selected to insure that analyses based on it will

exhibit all of the important thermal-hydraulic trends of the typical reac-

tor. The description of the core of a typical high temperature gas-

cooled reactor and the modeling of its thermal-hydraulic characteristics

are treated in the next section of this module.

Following the geometry and modeling section, the basic theory

governing the temperature distributions, heat transfer rates, pressure

drops, and energy balance considerations is presented. The temperature

distribution in the fuel is calculated assuming one-dimensional radial

heat conduction. In the graphite moderator a two-dimensional finite

difference calculation is used. The pressure drop in the coolant channels

and the heat transfer coefficient for use in Newton's law of cooling are

calculated from empirical relations developed for reactor coolant channel

flows. Energy balances for small axial segments of the coolant channel

are used to step the solution in the axial direction. Simple examples,

illustrating the individual calculations, are worked out in detail for

typical HTGR conditions.

The heart of the module is the HTGR Thermal-Hydraulics Computer Code.

Basically, the code solves for the radial temperature distributions in

the fuel, moderator, and coolant at any axial station and then marches

6



3

axially with an energy balance in the coolant. The code and its use are

described in detail. Included are a listing and definition of all vari-

ables, a discussion of all input requirements and resulting output, an

annotated flow chart of the code, an explanation of all options in the

code, and a listing of the code which includes enough comment statements

to clearly indicate the operational steps being performed. By proper

specification of the options the code can either be used as an individual

entity to study thermal-hydraulic aspects exclusively or as a subroutine

in the total HTGR module package to provide temperature feedback to the

other modules. Examples are worked out using the code. In typical

examples, the location and magnitude of the maximum fuel temperature in

the HTGR are found and the effect of undersized coolant flow channels on

maximum fuel temperature and coolant outlet temperature are determined.
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3.0. HTGR Fuel Geometry and Its Model

The typical high temperature gas-cooled reactor core is approximately

cylindrical in shape. A unit producing 3000 Mw(t) is composed of about

4000 fuel element assemblies. These fuel element assemblies are in the

shape of right hexagonal prisms about 31 in. high and about 14 in. across

the flats. The fuel element assemblies are arranged in about 500 stacks,

each 8 elements high, to form a core about 27 ft in diameter and 21 ft

high. To provide a flattening of the neutron flux (and hence the power

production) in the radial direction, the enrichment of the fuel in the

fuel element assemblies is varied in cylindrical zones. Dowels are used

to precisely align the fuel element assemblies. A small gap (about 0.04

in.) exists between the elements at room temperature to accomodate thermal

expansion. The core is surrounded by reflector and containment components

which increase the inside reactor vessel size to about 38 ft in diameter

and about 47 ft in height.

The hexagonal fuel element assemblies are machined from graphite which

acts as both the moderator for the neutrons and as structural support for

the reactor. The fuel, which generates heat internally during reactor

operation, consists of highly enriched uranium and fertile thorium in

carbide form. It is contained in fuel holes machined in the graphite.

These fuel holes, which are typically 1/2 in. in diameter, extend vertically

through about 95% of the 31 in. height of the right hexagonal prism. The

cooling of the fuel element assemblies is provided by the downward flow of

helium at about 50 atm. pressure through coolant holes machined between

the fuel holes in the graphite. A typical coolant hole diameter is 5/8 in.

The center-to-center spacing between fuel holes and between fuel and coolant



holes is typically 3/4 in. In each assembly there are about 200 fuel

holes and about 100 coolant holes. The cross section of a HTGR fuel element

assembly is shown in Figure 1.

In each hexagonal fuel element assembly the six coolant channels in

the corners of the hexagon are about 20% smaller in diameter than the other

coolant channels in the assembly. Since these smaller channels amount to

less than 6% of the total number, their smaller size will be neglected and

the model coolant channel diameter will be selected as that of the central

coolant channels. The coolant flow conditions in the model channel will

be taken as those for the average channel in the reactor.

The uranium-thorium carbide fuel is coated with layers of pyrolytic

carbon and bonded into rods. These rods fit into the fuel holes with about

a 0.010 in. diametrical gap at room temperature. The rods span about 95%

of the height of the fuel assembly element. To simplify the analysis, the

model fuel rod is assumed to span the entire height of the element and the

fuel rods are assumed to fit tightly into the fuel holes during reactor

operation.

The model fuel rod will have a variation in power density in the

axial direction. This variation will be taken as

q''' (Z) = q''' 712
cos

o He
(1)

unless a computed actual axial variation is provided from another module.

In Equation 1, q''' represents the thermal source strength per unit volume

at any axial location Z, q''' represents the thermal source strength per

unit volume at the center of the fuel rod (Z=0), and H
e

is the extrapolated

height of the core. Both q''' and q''' are taken to be constant radially
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Coolant Hole Elemental "Building Block"
of Core

Figure 1. HTGR Fuel Geometry
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throughout the fuel in the fuel rod. The magnitude of is--representa-

tive of that of the average fuel rod in the core. The extrapolated height

is calculated from

He = H + 2 Le (2)

where H is the actual height of the reactor core and L
e

is an extrapolation

length. The extrapolation length is the distance between the actual end

of the core and the location where an extrapolation of the waveform re-

presenting the actual neutron flux distribution within the core goes to

zero. From neutron diffusion theory Le can be shown to be about one

migration length for a bare core. The migration lengthcan be calculated

*
from neutron diffusion theory [1,2,3].

The triangular area shown hatched in Figure 1 represents the smallest

area that can be analyzed to calculate the thermal-hydraulic behavior of

the entire core. Note that all except about 1% (at the periphery of the

hexagonal boundary) of the fuel element assembly can be constructed

exactly from combinations of this basic "building block." The remainder

can be approximated by this "building block." The segment of moderator

enclosed in the triangular area will serve, in this module, as the model

of the moderator for the thermal-hydraulic analysis.

The reflector regions at the inlet (top) and outlet (bottom) of the

core are each about 4 ft long. Therefore, for purposes of calculating

coolant pressure losses, the additional lengths of coolant channel at the

inlet and outlet of the core will each be assumed equal to 20% of the core

height.

*Numbers in brackets refer to items in References.



4.0 HTGR Thermal-HydradlicTheory

4.1 Internal Heat Generation

As a result of nuclear fission in the fuel, heat is generated. The

rate of energy generation in the fuel per unit volume is called the

"volumetric thermal source strength," q''', and can be calculated from

q''' EfNff 3f tt (3)

where E
f
is the energy released per fission reaction (energy dimensions),

N
ff

is the fissionable fuel density (fissionable nuclei per unit volume),

of is the effective fission microscopic cross section (dimensions of

area), and cf is the neutron flux (neutrons per unit area per unit time).

Note that q''' has dimensions of energy per unit volume. The details of

this calculation of volumetric thermal source strength --are found in

Reactor Statics Module 8.

The volumetric thermal source strength varies throughout the reactor

since , and perhaps Nff, vary. For a cylindrical reactor, axial symmetry

of the reactor fuel is generally a reasonable approximation. Therefore

''' reduces to a function of only the radius, R, and the axial position,

Z. Across any single fuel rod, the change in q''' is small (due to small

change in R) and q''' can therefore be considered constant across its

cross section. Thus, for any single fuel rod q'" is a function of only

the axial position. Also for any small axial segment of a fuel rod (the

order of 2 to 3% of the total active length) the change in q''' is moderate.

Using a constant average value for any such segment thus introduces little

error into the analysis. This approximation is used in this module.
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The heat generation in any small segment of the fuel can be obtained

by multiplying the volumetric thermal source strength by the volume of the

segment. For steady state conditions this energy must be removed from

the fuel. The mechanism by which this heat transfer occurs within the

fuel is thermal conduction.

Example 1

A HTGR containing 5600 fuel elements stacked 8 elements high generates

4000 Mw(t). The cylindrical core of the reactor is 21 ft long and 32 ft

in diameter. Each fuel element consists of a 31.5 in. high right hexag-

onal prism of graphite 14.2 in. across the flats and has 132 0.620 in.

diameter fuel holes each containing a tight fitting uranium-thorium fuel

rod. The volumetric thermal source strength of the fuel varies as q''' =

q''' cos (liZ/H
e
). The extrapolation length for the fuel is 1 ft. Find

the average power per unit length (in kw/ft) and q''' for the typical 21 ft

high column of fuel rods in the core.

Solution

The power generated in the typical 21 ft high column of fuel rods is

P total 4000 x 10
P
ave

=
N (5600)(1/8)(132)

=43,300 watt = 43.3 kw.
6

Thus, per unit length the average power is
Pave 43.3 kw

2.06
kw.

L 21 ft ft

The power produced by the average fuel rod column can also be cal-

culated by integrating the power produced in each differential volume of

the'fuel rods. Thus,

H/2

Pave .1

q''' dV =Jr q'" cos (7Z/H
e f
)(7D2/4)dZ

V -H/2

13
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2
(He Df q"0'/4)(sin(wZ/He)]H/2..H/2

= (He 14 q':)'/2) ein(wH/2He).

Solving for q'":
O

If/
2Pave

H
e f
D2 sin(wH/2He)

Btu
(2)(43,300 watt)(3.413

watt-hr)
1 ft

(23 ft)(0.62 in)
2

12 in. )

2
sint(w)(21 ft)/(2)(23 ft)]

= 4.86 x 10
6

Btu/hr-ft
3.

14
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4.2 Temperature Distribution in the Fuel

For conduction heat transfer the heat flux is proportional to the

normal temperature gradient. When the proportionality constant is inserted,

DT
q
n

= -kA
n An

(4)

where qn is the heat transfer rate in the n-direction (energy/time), DT/Dxn

is the temperature gradient in the n-direction (degrees/length), An is the

area normal to the n-direction, and k is the thermal conductivity of the

material (energy/degree-length-time). Equation 4, which is Fourier's law of

heat conduction, relates the heat transfer to the temperature 'field and is

also the defining equation for the thermal conductivity. The thermal

conductivity is a material property and its magnitude in general varies

with the temperature of this material. Heat transfer properties of various

reactor materials are tabulated as functions of temperature in References

4, 5, 6, and 7. To reduce the complexity of heat transfer calculations, the

thermal conductivity is often assumed to be constant and evaluated at an

average temperature. The minus sign in Equation 4 assures that the heat

transfer is in the direction of decreasing temperature. Equation 4 shows

that temperature gradients are required for heat transfer. ln nuclear

reactor applications, where there are high heat transfer rates, large

temperature variations occur. One of the primary tasks of reactor thermal-

hydraulic analysis is the prediction of this temperature distribution in

the fuel.

The heat conduction equation in cylindrical coordinates,

D
2

+ 1 DT + + +1 D2T D2T q"' 1 DT

Dr
2 r Dr

r2 DO
2

8Z2
k a WI' 9

(5)
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and the initial and boundary conditions prescribe the temperature distri-

bution within the fuel rod. In this relation, the thermal conductivity,

k, and the thermal diffusivity, a, have been assumed constant. The

development of this equation is found in heat transfer texts [4, 5, 6]

and several simplified cases are given as exercises for the student.

For steady state conditions, the unsteady term on the right hand side of

the equation is zero, and for axial symmetry, the e variation disappears.

For HTGR applications axial symmetry in the fuel rods is a reasonable

approximation and since it greatly simplifies the analysis, this assumption

will be made. It may also be observed that since the length of a fuel rod

is much greater than its radius, the temperature gradients in the radial

direction will be much greater than the temperature gradients in the axial

direction. Therefore, to a good approximation, the heat transfer in the

axial direction can be neglected with respect to that in the radial

direction, and the resulting temperature distribution and heat transfer

reduced to a one-dimensional case for any axial segment in which q''' may

be assumed constant. The governing differential equation for this case

reduces to the ordinary differential equation,

d
2T

1 dT
+

2".
dr

2
+

r dr

The solution of Equation 6 subject to the boundary conditions

T = T
o

at r = 0,

rrn 0 at r = 0
dr

(6)

( 7 )

yields the temperature distribution in the fuel. The second boundary

condition is obtained from the observation that the temperature distri-

1 6
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bution must be continuous across the center of the cylinder. Observing

that both q''' and k are constant and that

d
2
T , 1 dT-

r dr

as

I

dT

in

, 2

=

=

+

1 d-
r dr

2.1

(
r

dT)
dr

(8)

(9)

(10)C
2'

dr
2

Equation 6 can be written

d

dr

Integrating twice results

211-

-
k
f

r.

C
1

In r +--r--T = -
k
f

4

Applying the boundary conditions of Equation 7, the integration constants

are

C1 = 0 ,

C
2
= T.

Substituting into Equation 10 gives

T = T r2,o4 k
f

(12)

This relation shows the temperature distribution in the fuel to be

parabolic with maximum temperature at the center. The heat transfer rate

through any cylindrical shell can be calculated from Fourier's law which

takes the form

dT
qr = -

f r dr
(13)

where A
r
= 2nr(AL), AL being the length of the cylindrical shell.
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Of particular interest are the temperature and heat transfer at the

surface of the fuel; i.e., at r = rf = Df/2. At this location,

T = T - 11-12- rf
f o 4 kf f '

dT
qf = -kf2Irrf (AL)

drIr = rf

Irr
f

2(AL)
q " .

(14)

(15)

Noting that Irr
2 AL is the volume of the fuel rod segment of length AL, it

is observed that the heat transfer out of the r = r
f
cylindrical shell is

indeed equal to the total energy generated as calculated from (q''')

(fuel volume). For one-dimensional heat transfer all of the energy

generated within the fuel, must be transferred out through the surface.

Example 2

Equation 14 relates the temperatures at the center and surface of a

heat-generating cylindrical fuel rod. This equation contains the thermal

conductivity of the fuel which, in general, is a function of temperature.

However, the analysis leading to Equation 14 assumes the thermal conduc-

tivity to be constant. Determine the temperature at which to evaluate kf

to make the assumption of constant kf compatible with a kf that varies

linearly with temperature.

Solution

The method of solution is to develop an expression relating To and

T
f
which assumes k

f
= a + bT and then compare this result with Equation

14. We begin with Fourier's law of heat conduction,

dT
q = -k A .

f r dr

18
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Recognizing that q = ql" (volume) and Ar = 2nr(AL):

dT
q''' nr

2
(AL) = -k

f
2nr(AL) .

dr

Simplifying, separating variables, and substituting for kf:

q''' rdr = -2(a + bT)dT.

Integrating from r = 0 to r = rf with q''', a, b constant,

I. Jo
2

T
2 0
r

q'" -4
b

= -a(Tf - To) - (Tf
2

- To)
2

2 aT + b T2 Tf

[

= [a +
2

(T
o
+ Tf)] (T

o
- T

f
)

ell 2

To - Tf -
f

4(a +
2 o

+ Tf)]

Comparing this with Equation 14 written as

T - T =
0 f 4 k

f

1 1 t 2q rf

we see that the relations are equivalent for

kf = a +
2

(T
o
+ Tf).

Note that this is precisely equal to kf evaluated at the arithmetic

T + T
f,average fuel temperature; i.e., k(0

2

9
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Example 3

In the HTGR Thermal-Hydraulics Code an expression for the average

temperature of the fuel between the r = rf/2 and r = rf radii is required.

Show that this can be expressed in terms of the fuel centerline temperature,

T
o
, and the fuel surface temperature, Tf, as

T
f ave

=
8 Too 8 Tf

Solution

The average fuel temperature in any region is defined as

T
f ave V

V
T dV.

Expressing the differential volume and the temperature as functions of

the radius, r, (using Equation 12 for the temperature).

1
. rf 2

jr CI 2-12-
k

)21"nrdr.T
f ave V 0 4

f
r
f
/2

Noting that the volume contained between rf/2 and rf is 3/471'4 and

integrating,

4 [ 2 nq"'r4 f

rnT
o

-T
f ave 2 8 k

f3nr
f r

f
/2

4 3 2
15nq'"r

f

4

[

2 4 1.'0 rf 128 k
f

f

III5 q rf 2

=To 32 k
f

But q''' can be related to To and Tf by Equation 14 as



Therefore,

17

f f 2qt rf
4kf To Tf.

- )Tf eve = To - T
o 8 o f

8
3 5

= T - T .
o 8 f

2i
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4.3 Temperature Distribution in the Graphite Moderator

In theory, the temperature distribution in the graphite moderator

can be obtained by solving the steady state heat conduction equation

(without internal generation) subject to the boundary conditions prescribed

along the periphery of the moderator. wever, the section of moderator

of interest is an irregular shape as shown in Figure 1. Therefore, the

bounding surfaces can not be expressed as lines of constant x, y, 0, r, or

Z in either a Cartesian or cylindrical coordinate system and as a result,

the boundary conditions are very difficult to apply. As a consequence, an

analytical solution for the temperature distribution would be very difficult

to obtain and even if obtained would be cumbersome to use. Thus, in the

present module, finite-difference methods are used to determine the

temperatures of interest in the moderator.

The basic finite-difference technique for determining the temperature

distribution in a body consists of placing a nodal structure in the body,

developing the system of algebraic equations that must be satisfied by the

nodal temperatures, and solving the system of equations for the individual

nodal temperatures.

The nodal structure is selected as a compromise between extreme

accuracy (many nodal points) and ease of solution (few nodal points).

The minimum number of nodes is restricted in the sense that there should

be a nodal point at each location where the temperature is of interest.

In general, nodal points are placed along the boundary of the region of

interest and then at equal spacings throughout the interior. However, as

we will see later, the equal spacing is not a necessity, but simply a

convenience. Each nodal point serves a finite-sized segment of the body
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and has a well defined nodal volume and nodal surface area. The volume

of all the segments taken together must comprise the body of interest.

The temperature of the entire segment is taken to be equal to its nodal

temperature. One convenient way of thinking of a node is as if all the

material associated with each node is shrunk to the nodal point and the

nodal point is connected to all adjacent nodal points by thin rods having

the correct resistance to heat transfer. A numbering scheme must be used

to provide identity for the individual nodes. Using the fact that there

is no heat transfer through lines of symmetry, these lines can be replaced

by adiabatic boundaries and the region that must be solved greatly re-

duced.

The algebraic equations satisfied by the nodal temperatures can be

developed in two ways. The classic way is to recognize that the heat

conductiOn equation must hold at the nodal point and then to express the

partial derivatives that appear in the heat conduction equation:as their

finite-difference approximation. Consider the nodal structure shown in

Figure 2, It has been assumed that there are no changes in the Z-direction

so that the problem reduces to a two-dimensional one. The shape of 'the

body of interest suggested the use of the Cartesian coordinate system nodal

structure that was set up. The setting of AX = AY was done for convenience.

The heat conduction equation that must be satisfied at every point in the

body, and therefore at node 9, is

D2T
2T

' "
+ + - 0.

DX2 ay2

(16)

The partial derivatives in this equation are now approximated as follows:
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Figure 2. Finite-difference Cartesian coordinate system example

..t11

T
9

- T
8

ax AX

89

LI 1 _
T
10

- T
9

ax AX

910

aT1 _ 221 T10 - T9 T9 - T8
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aT
T
5

- T
9

ay AY

59

T9 - T13

ay AY

913

3T

aY1 aY
221 T5 - T9 T9 - T

13'

a
2
T 59 913 AY AY

21 AY AY

T
5
+ T

13
- 2 T

9

AY
2

Substituting back into Equation 16,

T
10

+ T8 - 2 T9 T5 + T
13

- 2 T9
+ = 0.

AX
2

AY
2

For AX =

T+ T + T + T - 4 T +cittl(")2 =
8 10 5 13 9

0.

(18)

(19)

(20)

This is the desired nodal equation for node 9. Similar equations can

readily be obtained for all interior nodes of the body. The extension

to boundary nodes and especially convective boundary nodes such as nodes

4 and 5 in this example is somewhat more difficult and will not be

demonstrated for this method. Instead, the energy balance method, which

is readily extended to all types of nodes, will be used in this module.

To show the equivalence in the methods, the nodal equation for node

9 will be determined by the energy balance method. For steady state

25
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conditions the sum of the energy added to each nodal volume through its

boundaries and the energy generated within the nodal volume must equal

zero. Otherwise, there would be a net energy input to the nodal volume

which violates the steady state (no changes with time) criterLon. Thus,

for node 9,

88
+ q

1 9
+ q

5
+ q

1 9
+ q ''' (nodal volume) = O. (21)

Each of the boundary heat transfer rates occur by conduction and can be

determined from Fourier's law,

8T
q = - An

8xnn

Expressed in finite-difference form this becomes

AT
qn - k An

n

Applying this to each of the four boundary heat transfer rates,

-

8+9
= kW)(1)

T8

AX

T9

c11049
k(AY)(1)

T10
AX

T9

-

= k(AX)(1)

T5

Ay

T9

T -

9139 = k(AX) (1)
13
AY

T
9

(4)

(22)

(23)

Note that the minus sign in Fourier's law has been absorbed in the AT

and AX
n

for each term. In general, one may note that the temperature of

the node of interest always occurs behind the minus sign in the temperature

difference when the heat transfer rates are into the node. This obser-

26
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vation saves much tedious chasing of minus signs in developing the nodal

equations. Substituting the individual heat transfer rates into Equation

21 and noting that the nodal volume is (AX) (AY) (1),

T T9 T
10-T9

kpY kAY
T5 -T9

-T9 +kAX T13 -T9 +qm(AX)(AY)=0. (24)+kAX
AX AX AY AY

For AX = AY this reduces to

T
8
+ T

10
+ T

5
+ T

13
- 4T

9
+ g (Ax)2 = 0

which is identical to the result obtained earlier.

(20)

The energy balance method will now be applied to node 6 to demonstrate

how convective and insulated boundaries are treated. For node 6,

c156 q1046 clo*+
+ q'''(nodal volume) = 0.

For the two conduction heat transfer rates,

q = k(
AY

)

T
5

- T
6

546 2 AX

T - T
6

q 1046
= k(

2

AX
)

10

AY

(25)

(26)

The convective heat transfer rate can be obtained from Newton's law of

cooling,

q = hA(T
W

- T ).
co

For heat transfer into node 6,

AX
q00 6 2

= 11(--)(T
co

- T
6
).4

(27)

(28)

Substituting these heat transfer rates back into Equation 25 and noting
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,AX.,AY.,
that the nodal volume is V--7l--7l1),2 2

,AY
T
5
- T

6 AX
T
10

- T
6 AX AY

+ k-- + h01)(T T ) + q'"(--)(--)=0. (29)

2 AX 2 AY 2 = 6 2 2

For AX = AY,

= 0. (30)

This is the desired nodal equation for node 6. Note that the coefficient

of T
6

is the negative of the sum of the coefficients of the other tempera-

tures in the nodal equation. This observation can be used either as a

check or to obtain the coefficient of the temperature of the node of

interest.

With the energy balanoe method, the nodal equations for the

remainder of the nodes in the example of Figure 2 can readily be obtained.

With some practice, most of the nodal equations can be written by inspec-

tion. Also, the extension of the method to three-dimensional and one-

dimensional Cartesian coordinate problems should be obvious.

Unfortunately, not all problems can be readily treated with Cartesian

or even cylindrical coordinate system nodal structures. The present

problem of determining the temperature distribution in the graphite

moderator of the HTGR is such a problem. However, the energy balance

method is quite general and can be extended to different shaped nodal

volumes. Tetrahedron shaped nodal volumes are convenient for general

three-dimensional problems and triangular right prism nodal volumes are

convenient for two-dimensional problems since most bodies can readily be

decomposed into a number of these shapes. Replacing arcs with their

chords permits curved surfaces to be treated with little increased

28
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complexity and usually with acceptable accuracy. In the present moderator

temperature distribution problem, temperature gradients in the vertical

direction are several orders of magnitude less than those in the horizontal

directions so that the problem can be treated as two-dimensional. Thus,

a triangular right prism nodal structure of unit depth (triangular in the

plan view) will be used.

An expression for the conduction heat transfer rates between nodes

having a triangular structure must first be developed. Consider the

general triangular nodal structure problem shown in Figure 3. The only

Teo, h

T

Figure 3. Triangular nodal structure example.
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restriction is that all of the angles of the triangles must be less than

or equal to 90°. The nodal equation for node B is obtained from the

following energy balance for steady state conditions:

ciA4B c1C4B c1F4B "4". c1G4B goo4B clgen 0'
(31)

To calculate the internal energy generation for node B the nodal

volume associated with node B must be defined. This nodal volume is

taken as. the volume (per unit depth) enclosed by the dashed lines

surrounding node B. This boundary is composed of perpendicular bisectors

of all the lines linking node B to the other nodes.' With the nodal

volume of node B, VB, thus defined, the internally generated energy is

n = niff V
'gen ' B

(32)

The convective heat transfer rate can be calculated from Newton's

law of cooling as

B
= h A

c B
(T - T

B
) (33)

where A
cony B

is the distance between the midpoint of the link between

nodes A and B to the midpoint of the link between nodes B and C times

the unit depth.

To calculate the conduction heat transfer rates the concept of

conduction shape factors is extremely useful. The conduction shape

factor for heat transfer between nodes 1 and 2, S12, is defined as

q
142

= k S
12

(T1 - T
2
). (34)

One sees immediately that for rectangular shaped nodal volumes the shape

5'0



factor is given by
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S
Rect

= A
n
/(AX

n
)

(35)

where A
n

is the heat transfer area perpendicular to the n-direction and

AX
n

is the spacing between the nodes in the n-direction. For triangular

nodes it has been shown by Dusinberre [8] that the shape factors are

related to the cotangents of the opposite angle of the triangles through

which the heat transfer occurs. Specifically for path BGC

S
BG 2 2

=
1

cot BCG +
1

cot BFG. (36)

Similarly, assuming no conduction through the fluid on the convective

boundary,

S
BC

=
1

cot BGC. (37)

Writing similar expressions for the remaining conduction shape

factors and substituting into Equation 31,

where

k SAB(T
A
-T

B
) + k S

BC
(T
C-TB

) + k S
BF

(T
F
-T

B
) + k S

BG
(T
G-TB

)

+ h A
cony B

(T -T
B
) + q'''V

B
= 0

S
AB

= 1/2 cot BFA

S
BC

= 1/2 cot BGC

S
BF

= 1/2 cot BAF + 1/2 cot BGF

S
BG

= 1/2 cot BFG + 1/2 cot BCG.

31

(38)

(39)
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This relation can be simplified to

effy
B B

] (40)
kTB

1
[S T

B S
B

AB
T +S
A BC

T +S
C BF

T +S
F BG

T +
G co

+

where

SB = S + SB
C
+ S

BF
+ S

BG
+ hA cony B

k

Similar expressions can be developed for each of the other nodes in the

problem.

The nodal equations developed above carry an implied assumption of

constant thermal conductivity. If the temperature varies significantly

from node to node and the thermal conductivity is a strong function of

temperature the validity of this assumption is in question. In this case,

a better thermal conductivity to use in each of the heat conduction

terms is the arithmetic average of the thermal conductivities evaluated

at the two nodal temperatures; i.e.,

k
AB

= [k(T
A
) + k(T

B
)1/2. (41)

If k(T) is substituted into the nodal equations the resulting equations

become nonlinear and more difficult to solve. However, often the use

of a k evaluated at the average temperature of the problem suffices.

Here a nodal volume weighted k would be the best value to use, but is

tedious to calculate. Hence, a thermal conductivity evaluated at the

arithmetic mean temperature in the problem is generally used.

The nodal equations developed as described above for constant thermal

conductivity constitute a set of linear algebraic equations for the nodal

temperatures. These can be readily solved by standard, wellknown methods

32
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such as matrix inversion, elimination, iteration, or relaxation. Each of

these methods are well suited for computer calculations which are generally

made for problems of more than a few nodes.

Equation 40 is in a form directly useable for iteration methods. In

iteration schemes, the temperature distribution in the body is first

assumed. (Any rough, but logical, estimate works.) Then these assumed

temperatures are substituted into the right-hand side (RHS) of the equations

to calculate the temperatures on the left-hand side of the equations.

Then the calculated temperatures are compared with the temperatures used

in the RHS. If they agree to the desired accuracy, the problem is over;

if not, the calculated temperatures are used in the RHS and the process

is repeated until the desired accuracy is achieved. Two standard iter-

ation schemes exist. In Jacobi (total step) iteration, the temperature

in the RHS are updated after the entire set of equations has been used.

In Gauss-Seidel iteration, the temperatures in the RHS are updated as

soon as new values become available (from earlier equations in the set).

In general., the convergence of Gauss-Seidel iteration is somewhat faster.

Example 4

A HTGR fuel element assembly has a cross section as shown in Figure

1. The coolant hole diameter is D
c

, the fuel diameter is Df, and the

spacing is S. At one level in the core the coolant temperature is TB,

the heat transfer coefficient is h and the volumetric thermal source

strength is e". Assuming no heat conduction in the axial direction,

set up the equations for an iterative scheme to compute the temperature'

distribution in the moderator.
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Solution

The section of moderator that must be analyzed is the hatched area of

Figure 1. An expanded view of this region with the nodal structure added

is shown in Figure 4.

V.(

Figure 4. Geometry of Example 4 showing nodal structure.

The x and y coordinates of each of the nodal points are computed

first in terms of the 3 geometric parameters, D c' D
f'

and S.
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1
X1 = S cos-5 -74iDf Y

1
= 0

1 n
X2 = S cos-5 -iDf cos.& Y

2
= D

f
sina

6

1 n n
X3 = S cosi TDf cos3 Y3 = sin n -3-

X
4

= 0 Y4 = 0

X
5

= X/ 2 Y
5
= Y

2

YX
6
= X

5 6
= Y

3

1 n n 1
X7 = T Dc siir-- Y7 = S cos -6- - -2- Dc coa6-

X8 = 0 =
Y8 Y3

n
X
9

= 0 Y9 = S cos -E -
1

D

The conduction shape factors are determined next. The cotangents

in the shape factors are expressed in terms of the nodal point coordinates

calculated above.

1
k

5.12 1 f

6
= (X

1
- X

5
)/Y

5
+

2 k
----- cot

m2

1
S
14 2

= cot [Arctan X
5
/Y

5
+ Arctan (X

1
X
5
)/Y

5
]

S 15 X /Y + (X - X )/Y
15 2 5 5 2 2 1 2

1
k
f1

S23 = (X - X )/(Y - Y2) + -- cot
23 2 2 6 6 2 2 k 6

1
S
25

=
2

cot [Arctan (X
2
- X

1
)/Y

2
+ Arctan (X1 X

5
)/Y

5
]

1+
2

cot [Arctan (X
2
- X

6
)/(Y

6
- Y

2
) + Arctan (X

6
- X

5
)/(Y

6
- Y

5
)]

1
S36 = -2- cot [Arctan.(X7 - X6) /(Y7 - Y6) + Arctan (X3 - X7) /(Y7 - Y3)]

+ 2-
1
- cot [Arctan (X2 - X6)/(Y6 - Y2) + Arctan (X3 - X2)/(Y3 - Y2)]
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S
67

=
2

cot [n-Arctan X
6
/(Y

9
- Y

6
) - Arctan X

7
/(Y

7
- Y

9
)]

+
1

(X
3
- X

7
)/(Y

7
- Y

3
)

2

S
68 2

1
= cot [Arctan X5 /(Y/(Y - Y5) + Arctan (X 6 - X 5)/(Y

6
- Y5)]

1
+ 2 (Y9 - Y

8
)/X

6

S
69 2

1
= cot [--

2n
Arctan (Y

7
- Y

9
) /X

7
- Arctan (X

3
- X

7
)/(Y

7
- Y

3
)

3

Arctan (X
7
- X

6
)/(Y

7
Y
6
)]

S
79 2

cot [n - Arctan (Y
9

- Y
6
)/X

6
- Arctan (Y

7
- Y

6
)/(X

7
- X

6
)]

1
S
89 2

X
6
/(Y

9
- Y6).

The nodal equations can now readily be developed using the above

shape factors in the conduction terms. To assist in these developments,

sketches of the more complex nodal volumes are useful in helping to

visualize the heat transfer rates that must be taken into consideration.

Use is also made of the observation that lines of symmetry can be treated

as adiabatic boundaries.

Node 1:

From the sketch for node 1 on the following page,

q21 + (14+1 q 51 + q0+1 qgen 0.
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4 0

The last two terms may be combined by observing that they represent the

energy generated in the entire 15° circular segment of the fuel. With

this observation,

11.

6

2
k
m
S
12

(T
2
- T1)+ k

m
S
14

(T
4
- T1)+ k

m
S
15

(T
5
- T1)+ q'''

9
D
f

= 0.

Letting

S
1
= S

12
+ S

14
+ S

15

and writing the nodal equation in a form convenient for iteration,

2

1
Df

T1 = (S T +S T +S T+ ).
S
1

12 2 14 4 15 5 96 km

Node 2:

This node is similar to node 1 and its nodal equation can be written

by inspection as

ivy 2Df
T =-

1
(S T "4-S T +S T +S T+

2 S
2

12 1 23 3 25 5 26 6 48 km
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where

S
2
= S

12
+ S

23
+ S

25
+ 526 .

Node 3:

Again by inspection,

where

Node 4:

IIIwq 2

T3 (S T +S T +S T+
3 S

3
23 2 36 6 37 7 96 k

m

Df

S
3
= S

23
+ S

36
+ 537 .

q1+4 + c15*4
0.

Note that heat transfer between nodes 4 and 8 need not be considered

because there is no finite area through which this heat transfer can

occur. The use of image nodes (e.g. 5') across adiabatic boundaries
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helps in visualizing the problem. Solving for T4,

where

T4
4 S

1
4

(S
14

T +S
1 45

T
5

)

S
4

= S
14

+ 545 .

Nodes 5, 6, and 8 are simple pure conduction nodes.

Node 5:

where

Node 6:

where

Node 8:

where

T
5 S

1

5

= (S
15

T
1

+ S25 T
2

+ S45 T
4

+ S56 T
6

+ S58 T8 )

S
5
= S

15
+ S

25
+ S

45
+ 558 .

T
6 S
=1

6

(S
26

T
2

+ S36 T
3
+ S56 T

5
+

S67
T
7
+ S68 T

8
+ S69 T9 )

S
6
=S26 + S36 + S56 + S67 +S68 +S69 .

T =
1 (S T +S T +S T)

8 S8 58 5 68 6 89 9

S
8
= S

58
+ S

68
+ S

89

39
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Node 7:

36

Note that the actual circular arc heat transfer area is indicated. This

will give a better representation of the heat transfer resistance in the

convective layer than the chord length.

(13+7 c16-7 q9+7 0.

k
m
S
37

(T
3
- T

7
)+ k

m
S
67

(T
6

- T
7
) + kmS

79
(T

9
- T

7
)+ h 2--4 D

c
(T
B

- T
7
) = 0.

2

Solving for T7,

where

Node 9:

h "IT
c

T (S
7 S

7
37
T +S
3 67

T +S
6 79

T +
9 24 km

TB )

h111)

S7 S37 S67
S +

7 37 67 79 24 k
m



where

37

h IT])
c

S9 = S69 + S79 + S89 +
9 69 79 89 24 km

This set of nine nodal equations can now be solved to determine the

steady state temperatures at the nine nodal points in the moderator.

This is the set of equations built into the HTGR Thermal-Hydraulics Code.

In the HTGR Thermal-Hydraulics Code the equations are solved by an

elimination method, rather than by iteration, to save computation time.
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4.4 Temperature Drop in the Convective Layer

All of the heat generated within the fuel ultimately must be

transferred to the coolant. Thus, all of this energy must be transferred

through the fluid layer near the surface of the moderator. This heat

transfer mechanism, wherein the energy is carried away or convected from

the solid surface by a fluid in motion is called convection. The heat

transfer rate for convective heat transfer is related to the temperature

difference between the surface and the bulk fluid, the driving potential

for the heat transfer, by Newton's law of cooling,

qc = h A (T - T ). (27)
c c B

This relation may also be taken as the defining equation for the heat

transfer coefficient, h. The bulk temperature,TB, is a mass-weighted

average temperature of the fluid in the flow channel. It is formally

defined by

feCeT dA

.TB mC
p

(42)

This is the temperature that a thermometer would indicate if immersed in

a cup of fluid collected from the discharge of the flow channel in the

given location.

Relations for calculating h from the flow characteristics and

coolant properties have been developed. These will be treated in a later

section of the module. For the moment, the quantity of interest is the

temperature drop across the convective layer. In terms of h this can be

obtained from Equation 27 as
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qc- T =
B nD

c
(AL)h

where D
c

is the coolant hole diameter.

(43)
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4.5 Pressure Drop in the Coolant

All of the energy generated by nuclear fission in the fuel must be

carried out of the reactor by the coolant which flows in the holes in

the moderator. In a HTGR the coolant is gaseous helium which is force-

circulated by a compressor. Enough pressure head must be provided by

the compressor to overcome the pressure losses in the helium flow loop.

The entire loop consists of the reactor flow channels, the heat exchangers,

and connecting piping. Of interest here is the determination of the

pressure loss incurred in the flow through the reactor core. Two types

of pressure losses will be considered. These are the frictional pressure

loss along the coolant channel and the entrance and exit permanent

pressure losses.

The frictional pressure loss is a manifestation of the shear stress

on the flowing fluid by the walls of the flow channel. This pressure loss

is calculated from

2

c AL UB
APP

D 2g
c c

(44)

This relation may also be interpreted as the defining equation for the

friction factor, f. The bulk velocity, UB, found in Equation 44 is the

velocity averaged across the flow channel. It is defined by

1
U
B

= A jr U dA.
A

This velocity is related to the mass flow rate by

(45)

M = pAUB (46)



or to the mass velocity by
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G = = pUB. (47)

The value of the friction factor depends on the flow and surface

conditions in the channel. The flow conditions are characterized by the

Reynolds Number,

Re
p UBD1c

(48)

It is well known that for Re below a critical value the flow is laminar,

and for Re above the critical value the flow is turbulent. For internal

flows this critical Re is about 2000. Laminar flow may be thought of as

an ordered process in which fluid layers slide over one another, being

retarded only by the molecular interaction between the layers. The vis-

cosity of the fluid quantifies the magnitude of this interaction. In

laminar flow any disturbance in the fluid is damped by the viscous

action. In turbulent flow there is an additional random transport

mechanism operable. This mechanism may be modeled as eddies (finite sized

patches of fluid which retain their characteristics for finite times)

moving throughout the fluid, transporting mass, momentum, and energy by

virtue of their movement. This action is quite violent and results in

transport rates much greater than those by purely.molecular activity in

laminar flow. In turbulent flow, disturbances in the flow field grow

and propagate resulting in increased turbulence levels downstream of the

disturbances. Even in highly turbulent flows, there exists a layer near

the solid bounding surfaces where the presence of the wall retards the

penetration of eddies and therefore acts as a flow stabilizer. This

45
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results in a laminar sublayer existing near any solid boundary. Even

though this layer is very thin, much of the temperature and velocity

change between wall and bulk conditions occurs in this layer. In reactor

coolant channels the flow is highly turbulent with Re of the order of

100,000 and greater quite common.

The surface condition of the flow channel is characterized by the

ratio of the surface roughness height to the diameter of the

flow channel, e/D . The flow channel exhibits smooth tube behavior if
c

the roughness height is less than the thickness of the laminar sublayer

For reactor coolant flow channels the surface conditions are controlled

so that this criterion is met.

The smooth circular tube friction factor for the coolant channel

can be determined from a Moody chart where f is plotted versus Re.

These charts are found in most fluid mechanics texts and handbooks (7,

9, 10, 11]. An alternate method is to calculate f from a correlation in

equation form. One of the most widely accepted for the turbulent flow

conditions of reactor work is

0.184
f
circ

=

Re.2()

This relation, like the Moody diagram, was obtained from a curve fit to

experimental data in smooth circular tubes. The friction factor defined

in this module is the Darcy-Weisbach friction factor. Care must be taken

not to confuse this friction factor with the Fanning friction factor

(f
Fan

= f
D-W

/4) also found in the literature.

The permanent pressure losses at the inlet and exit are the result

of increased viscous energy dissipation resulting from increased turbulent
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activity. These losses may be calculated from

2
pU
B

AP
E

= K
2g

c
(50)

In this relation K is the resistance coefficient for the inlet or exit

geometry. The inlet may be approximated as a sudden contraction from a

very large diameter to the coolant hole diameter. For this sudden

contraction, the resistance coefficient is 0.5 [11]. Similarly,

the exit may be approximated as a sudden expansion from De to a very

large diameter. For this expansion, K is 1.0 [11].

Example 5

The HTGR described in Example 1 has an inlet coolant temperature of

600 F, an inlet coolant pressure of 701 psia, and a coolant mass velocity

of 8.3 x 10
4

lbm /hr -ft2 through coolant holes 0.826 in. in diameter. The

coolant exit temperature is 1400 F. Estimate the frictional pressure loss

in the core. Neglect entrance and exit losses.

Solution

To obtain a one-step estimate, the coolant properties are evaluated

at the average coolant temperature and pressure. The average coolant

temperature is 1000 F. The average pressure will be assumed to be 700

psia. (This must be checked later.) At these conditions the helium

properties required in the solution are

P = 0.0889 lbm /hr -ft

2lbf in
(700 172)(144 T72)

P
P =

,:,

ft-bf
)(1460 R) ft

3
= 0.179

UM

(386
RT

Dym-lR

The average coolant velocity is found from

ft
UB = G/p = (8.3 x 10

4
libm/hr-ft

2)/(0.179 lbm/ft
3) = 464,000 ft/hr = 128.8 ---

sect

1,1! 7
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The Reynolds Number is

Re = U
B

D
c
p/p

= (464,000 ft/hr)(0.826 in.) (
ft

12 in.
)(0.179 lbm /f t3) /(0.0889 lbm /hr -f t)

= 64,300.

Using the circular tube friction factor correlation,

f = 0.184/Re°
.2

= 0.184/(64,300)
0.2

= 0.0201.

From the defining equation for the friction factor,

AP
F

= f(AL/Dc) p U
B
/2g

c

= (0.0201)(21 ft)(
12 In.

)(120 in./0.826 in.)(0.179 lbm/ft3)

(464,000 ft/hr)
2
/(3600 sec/hr)

2
(2) (32.2 lbm-ft/sec

2
- lbf)

= 282.8 ibf/ft
2

= 1.96 psi.

96
The average pressure in the core is 701 -

1.
- 700 psia. Therefore,

2

the assumed value of 700 psia was acceptable for Lie density calculation.

Example 6

Each coolant channel in the reao... core h v. the same pressure drop.

If all coolant channels are not identicel tit, flow will redistribute such

that this equal pressure drop is attained. Determine the relation

between average velocity in the coolant channel (or equivalently the



45

mass velocity) and the diameter of the channel which governs the flow

distribution.

Solution

The frictional pressure drop is given by

pU
B

D

L

2

A
AP = f

2g
c c

Substituting for the friction factor,

pU
2

AP =
0.184 AL B

Re
0.2 D

c
2g

c

2

0.184 AL
pU

B

B c
D

0.2 D
c

2g
c

a U
1.8

/D
1.2

B c

if the same density and viscosity are assumed for each channel. For

channels 1 and 2, each having equal pressure drop,

or

U
1.8

/D
1.2

=
U1.8 /D1.2

B1 cl B2 c2

U
B2

/U
B1

= (D
c2

ID
cl

)
2/3

.
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4.6 The Heat Transfer Coefficient

No direct analytical methods for predicting the heat transfer

coefficient for turbulent flow in circular tubes exist. However, by the

use of an analogy between heat and momentum transport, the dependence of

h on the flow field characteristics, i.e., on the Re can be predicted.

Then by applying theresults of an heat transfer analysis for flow over a

flat plate an estimate of the Prandtl number dependence can be obtained.

The Pr may be interpreted as a dimensionless modulus relating the temper-

ature field in the fluid to the flow field. For Pr of unity, similar

velocity and temperature profiles exist in the fluid. Finally, the

predicted expression for h is compared to empirical correlations found

to fit the available experimental data.

The heat transfer across a fluid layer in laminar flow may be calcu-

lated from Fourier's law

dT
q = - k A

dy '
(51)

where y is the direction normal to the fluid layer. Similarly, the shear

stress in the fluid can be related to the velocity gradient by

dU

-5.}7-

(52)

which defines the viscosity coefficient p. These relations can be

rearranged to yield

and

--9_ =
dT

nC A dy

d1 dU
dy

50

(53)

(54)
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In these relations, a = k/pC is the molecular diffusivity of heat and

is the kinematic viscosity or the molecular diffusivity of momentum. We

now postulate that the eddy transport of heat and momentum present in

turbulent flow can be expressed in the same form. To this end, we define

the eddy diffusivity of heat, CH, and the eddy diffusivity of momentum,
CM'

as the parameters, that, when multiplied by the appropriate gradient, yield

the corresponding transport rate for turbulent flow. In general, CM and

E
H vary throughout the flow field. For the combined molecular transport

plus turbulent eddy transport,

and

--q - - dT
pC A cH) 'Tr

dU
= (v + e ) .

M dy

(55)

(56)

We now assume that heat and momentum are transported by analogous

processes and at the same rate. This requires that a = V and CH = cm.

Since the Pr = v/a, the first condition is equivalent to Pr = 1. Simi-

larly a turbulent Prandtl number may be defined as Pr = cm/CH. Therefore,

the second condition is equivalent to Prt = 1. The basic assumption we

have made also implies that both q and T vary in the same way across the

flow field; i.e.,

ctw

- Constant -
C AT C T

P w w

(57)

if the constant is expressed in terms of quantities at the surface or

wall.
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Dividing Equation 55 by Equation 56 and using the assumption dis-

cussed above,

dU = - dT. (58)
C A T
p w w

Integrating this expression between wall conditions and fluid bulk

conditions,

U

qw
B

dU =

B

dT.
CpAwT f

w U T
w

Using Uw = 0, this reduces to

qwUB

C A T
- Tw - TB.

p w w

(59)

(60)

To introduce h into this expression, Newton's law of cooling (Equation 27)

is used to give

qw
h

Aw(T
w

- T
B

)

Substituting Equation 61 into Equation 60,

Cr
h =

UB

(61)

(62)

The shear stress at the wall can be elijainated from this expression

in favor of the friction factor. To do this, Tw is first related to the

pressure loss over the length AL of the channel and then Equation 44

relating the pressure loss and the friction factor is used. Consider

the fluid in a. section of channel of diameter D and length AL. For fully

developed flow, the sum of the forces acting in the flow direction must

equal zero. The forces that must be considered are the pressure force

m
on the upstream circular face, -17D

2
P, the pressure force on the downstream
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face, D
2

(P-AP), and the shear force along the periphery, irDAiT
w

. Summing

these forces with proper regard as to their direction gives

or

x 2
D P = x DALT

w 4
+ D2 (P-AP)

=T Ap
w 4AL

Using Equation 44 for AP, this becomes

P U

2
pU

2

BD
Iw 4AL D 2

B = f
8

Substituting Equation 64 into Equation 62,

h = C
p

p U
B 8

.

(63)

(64)

(65)

Introducing the Stanton Number, a convenient dimensionless grouping

common in heat transfer work, Equation 65 becomes

Using Equation 49 for f,

St :
h

=
pC

p
U
B

8

St= 0.023 Re0.2 .

(66)

(67)

This result is often found expressed in terms of the Nusselt number defined

as

Nu =
hD

. (68)

One common interpretation of the Nu is that it is the ratio of the actual

convection heat transfer from a surface to the heat transfer assuming that
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only molecular conduction were present. Noting that

hD
(---)

h k Nu
Sty _ =

oC
p
U
B i+)1C II oDU

B)
Pr Re '

we can rewrite Equation 67 as

Nu = 0.023 Pr Re() 8.

(69 )

(70)

The Pr dependence found in Equation 70 is not correct. One reason

why this incorrect dependence appears is that Pr = 1 was assumed early

in the development; therefore, one would not expect the Pr dependence to

be properly represented in the result. The analysis of laminar flow heat

transfer from a flat plate, one of the few cases which can be treated

analytically, yields a Pr
1/3 dependence is an expression for the Nusselt

number. In practice it turns out that this Pr
1/3 dependence is reasonably

accurate for the turbulent pipe flow case of interest here as well. In

fact some of the empirical correlations found in the literature exhibit

this Pr
1/3 dependence in the Nu(Pr, Re) relation. However, the relation

that is the best known, most widely used, and is recommended here is the

Dittus-Boelter Equation [12].

Nu = 0.023 Re
0.8

Pr
n

.
(71)

For the fluid in the tube being heated the recommended value of n is 0.4

and for the fluid in the tube being cooled the recommended value of n is

0.3. The former case is the one found in reactor work. In Equation 71

several temperature dependent fluid properties appear (k, p, p, C ).

These properties are to be evaluated at the average bulk temperature of

the fluid for the segment of tubing of interest. The heat transfer
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coefficient determined from Equation 72 is the average value around the

circumference of the coolant channel.

Example 7

Determine the average heat transfer coefficient for the HTGR described

in Examples 1 and 5.

Solution

The average heat transfer coefficient corresponds closely to that

calculated at the average coolant conditions; i.e., 1000 F and 700 psia.

Additional fluid properties required for this calculation are

C = 1.248 Btu/lbm-F,

k = 0.167 Btu/hr-ft-F.

The Prandtl number is

= C p/k

= (1.248 Btu/lbm-F)(0.0889 lbm/hr-ft)/0 167 Btu/hr-ft-F)

= 0.664.

From the circular tube Nusselt number correlation,

Nu = 0.023 Re()
.8

Pr()
.4

= 0.023 (64,300)
0.8

(0.664)
0.4

= 137.2.

Calculation of h from the definition of Nu gives

h = (Nu) k/Dc

= (137.2)(0.167 Btu/hr-ft-F)/(0.826 in.)(
12

t

in.
)

= 332.8 Btu /hr-ft-F.
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4.7 Incremental Energy Balances

As heat is transferred from the fuel to the coolant, the temperature

of the coolant rises. Thus, the coolant temperature varies from a minimum

at the inlet of the coolant channel to a maximum at the exit of the nore.

The bulk temperature at any axial position can be determined from an energy

balance where the total energy added by heat transfer to the coolant is

equated to the energy rise of the coolant, i.e.,

in
Jr q' (Z) dZ (72)

H/2

where (Cc is the heat transfer rate per unit length of fuel rod. Noting

that for a monatomic ideal gas Ai = C
p
AT

B
, this can be rewritten as

1
T
B
= T

in
17E- q' (Z) dZ.

p fH/2
(73)

Equation 73 can be used to determine the bulk temperature increase for

any segment, AL,' of the coolant channel by

Z
c
-AL/2

-1 (74)

TB2-
T - ig(Z) dZ

B2 Bl m Cp
Zc +AL/2

where Z
c

is the center of the increment under consideration. Defining

an average surface heat flux for the increment, = 4 /A , the incremental
c

bulk temperature rise becomes

T
B2

- T
Bl

-
rrD

c
AL

7:1111

m C qc
p

(75)

The local surface heat flux, ci(Z), is related to the local volumetric

thermal source strength by observing that all of the energy generated in

the fuel is transferred into the coolant at the coolant-moderator surface,

n 2
aD

c
dZ q'

4
(Z) = 2 D

f
dZ q'''(Z).
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The factor of 2 on the righthand side accounts for the fact that the

energy generated in two fuel rods is transferred to each coolant channel.

This simplifies to

Similarly,

D
2

qt(Z) = q",(z).
c

D2
L 70t,

4 c 2D
c

(77)

(78)
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5.0 The HTGR Thermal-Hydraulics Code

The HTGR Thermal-Hydraulics Code calculates the thermal-hydraulic

performance parameters discussed in Section 4 for the HTGR model described

in Section 3. The basic operational steps of the code are listed below.

1. Real-i--a- integer conversions

2. Definition of statement functions

3. Accept and print input

4. Calculate geometrical parameters of reactor

5. Calculate shape factors for finite-difference
equations used in moderator temperature
distribution calculation

6. Determine calculation increment

7. Calculate inlet pressure loss.

8. Initialize to 1st calculation increment

9. Calculate bulk temperature rise and average
temperature for 1st increment

10. Calculate average coolant properties for 1st

increment

11. Calculate pressure loss, exit pressure, and
average pressure for 1st increment

12. Calculate heat transfer coefficient for 1st
increment

13. Calculate moderator temperature distribution for
1st increment

14. Calculate temperature distribution in fuel for

1st increment

15. Print 1st increment output

16. Repeat steps 8-15 for remaining increments

17. Calculate exit pressure loss and core exit pressure

18. Print coolant exit conditions.
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The details of these specific steps requiring further explanation

are found in the discussion below. A flow chart showing the calculations

and logic is given in Section 5.4.

The statement functions are used for convenience in calculating

property data. These statement functions are in the form of some property,

either of the coolant, moderator, or fuel being the function of the

corresponding temperature. All of the function forms are polynomials

obtained by fitting polynomials of various degree to tabulated data. The

order of these polynomials varies, having been selected to insure that it

is accurate to written 2% over the range of interest of the parameter.

A detailed discussion of the input requirements is deferred until

Section 5.2. For the moment it suffices to note that this input is

supplied on three cards; one each for the geometry, the inlet flow

conditions, and the reactor power level.

The temperature distribution in the moderator is calculated from

the nodal equations developed in Example 4. As preliminary calculations,

the coordinate locations of the nine nodal points and the conduction

shape factors are determined from the coolant hole diameter, fuel diameter,

and spacing supplied as input to the code.

In the code, the model coolant channel, fuel rod, and moderator are

sliced into short segments which are stacked axially to form the proper

length core. The actual length of these segments is selected as a compro-

mise between the very short segments for which the assumption of constant

properties over the section axially is accurate and the very long segment

which minimizes the computer time. An increment size equal to 1/50 of

the active core length is built into the code. To study the effect of
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increment size,or to save computer time,this can readily be changed by

altering two lines of the code.

After the increment size has been computed, the coolant conditions at

the beginning of the first increment are established. The bulk temperature

and mass velocity at the entrance of the first increment are set equal to

the core inlet conditions provided in the input. The pressure at the

entrance of the first calcUlation increment is obtained by subtracting the

inlet pressure loss, computed from Equation 44 and Equation 50, from the

pressure at the inlet of the core. In addition, counters required in the

code logic are set equal to 1, denoting the first increment.

The first major calculation in the code is the determination of the

bulk temperature rise for the first calculation increment. This temperature

rise is calculated from Equation 75 with determined from Equation 78.

For small calculation increments, the average volumetric thermal source

strength can be accurately approximated by evaluating Equation 1 at H/2

-AL/2; i.e., at the center of the increment.

The average bulk temperature, TB, for the increment is taken as the

arithmetic average of the inlet and exit values. All coolant properties,

.except the density, used in the pressure drop and heat transfer coefficient

calculations are assumed to be functions of temperature only and are

evaluated at the average bulk temperature. The density is calculated from

the ideal gas law using the average bulk temperature and the inlet pressure

of the increment.

Both the friction factor and heat transfer coefficient calculations

require the Reynolds number of the flow which is calculated from Equation

48. Then f and Nu are calculated from Equations 49 and 71, respectively.
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Knowing f, the pressure drop for the increment is calculated from

Equation 44. The heat transfer coefficient is calculated from the Nu

definition, Equation 68.

The temperature distribution in the moderator is calculated next.

To do this, the nine finite-difference equations developed in Example 4

are solved to yield the nine nodal temperatures. An elimination method

is used in this calculation. The moderator temperature distribution

calculation is complicated somewhat by the fact that both the moderator

and fuel thermal conductivities which appear in the finite-difference

relations are temperature dependent. Therefore, an iteration on the

thermal conductivities is performed. The procedure is to assume average

moderator and fuel temperatures, evaluate the thermal conductivities at

these assumed temperatures from the statement functions, calculate the

moderator and fuel (procedure described in next paragraph) temperature

distributions and average temperatures, evaluate the thermal conductivities

at these new average temperatures, and compare the new and original

thermal conductivities. If the new thermal conductivities are within

2% of those used in the previous iteration, the calculated moderator

temperatures are accepted. If either thermal conductivity differs by

more than 2%, the calculation process is repeated until finally the 2%

criterion is met. The initial assumed average moderator and fuel tempera-

ture are estimated from the results of the previous calculation increment.

For the first increment, an initial guess is built into the code.

After the coolant channel and moderator calculations for the incre-

ment have been performed, the radial temperature distribution in the fuel

is calculated for the increment. First, the temperature at the outer
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surface of the fuel is found. This is taken as the area-weighted

average of the temperatures calculated at the moderator-fuel interface

in the moderator finite-difference calculation. The next step is to

calculate the temperature at the center of the fuel. In this calculation

axial symmetry is assumed and Equation 14 is used. In Equation 14 the

thermal conductivity of the fuel appears. This property is temperature

dependent and should be evaluated at the mean temperature of the fuel.

However, the mean fuel temperature is dependent on the temperature rise

across the fuel. Thus, an iterative-type of solution is called for. The

procedure used is to evaluate k
f-I

at TV calculate T0, calculate

T
'

evaluate k at T , compare k to k
f-I.

If

fuel mean fuel mean f-IIf-II

k
f-II

is within 2% of k
f-I'

accept value of T
0.

if kf-I1
is not within

2% of k
f-I'

let k
f-I

=-- k
f-II

and repeat the sequence. In this way, a

fuel thermal conductivity accurate to within 2% is used. The fuel

temperatures at the quarter, half, and three-quarter radii are then

calculated from Equation 12.

After the calculations for the first increment are completed the

results are printed out. Discussion of the output is deferred until

Section 5.3. It should be noted here, however, that in the output

tabulation the temperatures are reported as having occurred at the axial

center of the increment. In other words, for the first increment the

results are reported at Z = H/2 - AL/2. After the results for the first

increment have been printed out, the code increments to the next segment,

and continues this process until all 50 segments have been spanned.

After the completion of the calculations and printout for the 50

segments of the core, the core exit conditions are calculated and printed.
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A calculation of the exit pressure loss using Equations 44 and 50 is

required. Then P
ex

and T
ex

are computed and printed, ending the compu-

tations.
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5.1 Nomenclature

Analysis Symbol Code Symbol Description

A Area

A Convective heat transfer area
cony

A
f

AFL Flow area of coolant channel

A
n

Heat transfer area normal to n-

direction

A
r

Heat transfer area at radius r II

A Heat transfer area at surface
c of coolant channel II

A Surface area of wall

C
1,

C2, C3, C
4

Integration constants

COMPA1 COMPA1 Last iteration value of k (T )
f fo
_ 1

COMPA2 COMPA2 Last iteration value of k (T
in

)m

P
C CP Constant pressure specific heat

D Diameter

D
f

DFU Outside diameter of nuclear fuel I

D
c

DCL Diameter of coolant channel

E
f

Energy release per fission

e ERR Error ratio

f F Friction factor

-

gc
Dimensional constant 32.174 2

ft

-lbf

I

GIN Mass velocity

h HTC Convective heat transfer

coefficient

H H Height of active core
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Analysis Symbol Code Symbol Description

H
e

HE Extrapolated height of core

ENTH Enthalpy

i
in

Enthalpy at inlet of core

INC INC Increment counter in code

k Thermal conductivity

kB KBC Thermal conductivity of the
coolant

k
m

KMO Thermal conductivity of moderator

k
f

KFU Thermal conductivity of fuel

k
f-I

KFU1 Thermal conductivity of fuel - at
pre-iteration average fuel
temperature

k
f-II

KFU2 Thermal conductivity of fuel - at
updated average fuel temperature

K Flow resistance coefficient

L
e

Extrapolation length

AL DELL Length. increment

MDOT Mass flow rate

n Exponent in Equation 71

N
ff

Number of fissionable fuel
nuclei per unit volume

Nu NU Nusselt number

Option OP Option = 1 for cosine, Option =
2 for coupled program

Pw
PW Wetted perimeter

P PAV Pressure

P
1

P1 Pressure at beginning of increment

P
2

P2 Pressure at end of increment

P
ex

PEX Core exit pressure
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Analysis Symbol

P
in

Pr

Pr
t

AP

AP
E

AP
F

q

of

qn

qc

qw

qgen

civvy

toy,
o

q'old

r

r
f

R

RAT1

RAT 2

Re

S

62

Code Symbol Description

PIN Core inlet pressure

PR Prandtl number

Turbulent Prandtl number

Pressure drop

DELPE Exit or entrance pressure loss

DELPF Frictional pressure loss

Heat transfer rate

Heat transfer rate at D
f

Heat transfer rate in n-direction

Heat transfer rate at D
c

Heat transfer rate at wall

Heat transfer from node i to node j

Heat flux at D
c

Energy generated inside nodal
volume

QTPAV Volumetric thermal source strength

QTFO Volumetric thermal source strength
at center of core

QTPOLD Value of q"' used .in previous
increment

RAT1

RAT 2

RE

S

Fuel rod radial coordinate

Radius of fuel

Core radial coordinate; also gas
constant

Relative error in fuel thermal
conductivity between iterations

Relative error in moderator thermal
conductivity between iterations

Reynolds number

Center-to-center spacing between
fuel rods and coolant holes
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Analysis Symbol Code Symbol Description

S, SI Coefficient of T. in nodal equations

c0
j

Conduction shape factor between
nodes j and k

St Stanton number

T T Temperature

T
o

TO Temperature at center of fuel rod

T
1/4

T14 Temperature in fuel at r = 1/4 rf

T
1/

T12 Temperature in fuel at r = 1/2 rf
2

T
3/4

T34 Temperature in fuel at r = 3/4 rf

T
B

TBAV Coolant bulk temperature

TB1 TB1 Bulk temperature at beginning of
in

T
B2

TB2 Bulk temperature at end of
increment

T
f

TF Temperature in fuel at Df

T
fo

TFOAV Average temperature in fuel
between r

f
/2 and r

f

T
ex

TEX Core exit temperature

Tin TIN Core inlet temperature

T
c

TSAV Surface temperature inside convective
layer

T Free stream fluid temperature
co

T
w

Wall temperature

AT Temperature difference

U Velocity

U
B

UB Average velocity in flow channel

V Volume

x Cartesian coordinate

x
n Coordinate in n-direction



Analysis Symbol

X

AX

y

Y

AY

Zc

a

eFi

0

qtr

3
f

T
w

superscript-

64

Solely421

ZC

VIS

RH0

Description

Cartesian coordinate of nodal point

Node spacing in x-direction

Coordinate normal to wall

Cartesian coordinate of nodal point

Node spacing in y-direction

Axial coordinate

Axial location of center of incre-
ment

Thermal diffusivity

Roughness size

Eddy diffusivity of heat

Eddy diffusivity of momentum

Angular coordinate

Transport mean free path

Absolute viscosity

Kinematic viscosity

Density

Average fission microscopic
cross section

Shear stress; also time

Shear stress at wall

Neutron flux

Average for calculation increment
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5.2 Code Input

The input to the HTGR Thermal-Hydraulics Code is intentionally

extremely simple. Only three cards are required; the first lists the

geometrical quantities, the second lists the coolant inlet conditions,

and the third lists the parameters that describe the volumetric thermal

source strength distribution in the reactor.

The required input data cards are listed below. The units of each

parameter and their input format are included. Sample input cards are

shown in Figure 5.

Card 1 - Geometry

D
f

(in.) F 10.4

D
c

(in.) F 10.4

S (in.) F 10.4

H (in.) F 10.4

Card 2 - 'Coolant inlet conditions

(lbm/hr-ft2) E 10.3

T
in

(F) F 10.1

P
in

(psia) F 10.1

Card 3 - Power distribution

q"' (Btu/hr-ft3) E 10.3
o

H
e

(in.) F 10.1

Option (pure number) I 10

On Card 3 the axial volumetric thermal source strength distribution

through the core is specified. For independent operation of the code

(Option = 1) a cosine distribution is built into the code and (41(1)' and
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He are the parameters which indicate its level and period. When the

HTGR Thermal-Hydraulic3 Code is coupled with other codes (Option = 2)

the cosine distribution is over-ridden by the actual power distribution

which is supplied by the main program.
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5.3 Code Output

Three sets of information are printed out. Each is printed under

completely explicit headings such that there should be no interpretation

difficulties.

The first set of output information consists of a listing of the

input that was supplied to the code.

The second and main set of output is a tabulation of the temperatures,

h and AP for each increment in the core. The temperature printed out are

To' T1/4, T1/2' 13/4' Tf' TB, and
T
1

through T
9

in the graphite moderator.

From this data, observations of the maximum fuel and moderator temper-

atures and their locations can be made.

The third set of data reports the core exit pressure and temperature.



Input:

D
f'

D
c'

S, H

G, P
in'

T
in

e", H
e
, Option

o
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5.4-Code-Flow Chart

tar

kf(T), km(T)

kt(T), p(T)

V

AL =

Xi = Xi(Df,Dc,S)

Yi = Yi (D
f'
D
c'

S)

i = 1, 9

74

Functional relations between
variables supplied to code as
polynomials.

Geometry, inlet coolant
conditions, and per distribu-
tion supplied to code.

Printout of geometry, inlet
coolant conditions, and power
distribution.

Selection of calculation
increment.

Coordinates of nodal points
for moderator finite-difference
network are calculated.
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S
jk

= S
jk

(X
i
, Y )

jk = 12,14,15,23,25,26,
36,37,45,56,58,67,
68,69,79,89

Output:

Xi'
Y

sj

= P
in

/RT
in

= G/p

Re = UBDcP/v(Tin)

f = 0.184/Re°
.2

AP
F

= 10f(AL/D ) U /2g
c p c

PE = 0.5P0$ /2gc

1
= P

in
- AP

E
- AP

T
Bl =

T
in

Z
c
= H/2 - AL/2

INC =

V

Tm = T
in

+ 300 cos lac/He

Tfo = T
in

+ 500 cos ITZ c
tH

re

Calculation of conduction shape
factors for moderator finite-
difference network.

Printout of nodal point coor-
dinates and shape factors.

Calculation of permament
pressure loss at inlet.

Initializing pressure, tempera-
ture, position, and increment
counter for 1st increment.

Initial guesses for averac!
fuel mad moderator temperatures
for first increment supplied
to code.
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= q''' cosiac/He

= /2fiCT 4.i!"71.D2
Bl f P

(TB1+TB)/2

= P
1
/Ri

B

UB = G/p

Re = UBDc P/ (T.13 )

f = 0.184/Re0.2

1 AP . f(61./D
c)pU

2

B
/2g

c

P
2
= P

1
-1

=1.248p(TB)/kB(;)

= 0.023Pr
0.4

Re
0.8

h = Nu kBalid/Dc

[---

. 1 + ef TB)m B ' m B''' 'd'
Y i"; 4. tF...i )i,,,,,,,,,)
fo B ' fo B-'' ''old'

s
i=s i(!

;
]

1
f

,kmara),D

.14 1, 9

Calculation of average bulk
temperature of coolant for
increment.

Calculation of pressure drop
and exit pressure for increment.

Calculation of average heat
transfer coefficient for
incxement.

Obtaining best guess initial
values for average fuel and
moderatcL temperatures for
finite-differende calculation.

Calculation of coefficients c'
T, in nodal equations,
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T T (S
i)

S
ik

,T
1
,k
m
(T
m
),k

f

,h;fit)

(T 4-2T
2
41

3
) 4

(T
7
+T

9
) /2

= 1..+q"'D?/16kTo
r fl

Tf (Tf+fo)
/ 2

k (c)

Solution of moderator temperature
distribution.

Calculation of average temperatures
at surfaces of fuel and coolant.

Calculation of fuel centerline
temperature. The thermal con-
ductivity of the fuel is eval-
uated at a mean fuel temperature
by an iterative technique.

Saving values of thermal con-
ductivities for later comparison.
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Y

Tfo -( fo +5 if )/8

m
.(T

1
+T

2
+T

3
+T

4
+T

5
+T

6
+T

7
+T

8
+T

9
)/9

RAT1 = 1(COMPAl-kf(Ff0))/COMPAll

RAT2 = 1(COMPA2-kuN)/COMPA21

\\\\Output:

INC
'

Ze Fe F
1fle

F
1/2;

f
3/4'

YvieYB,h,AP

T
l'
T
2'
T
3'
T
4'
T
5'

RAT1:0.02
RAT2:0.02

1/ To il"

1/28.717&24-
"'14/64 kn.

3/4=10-9q"ID/256 kn.

/256 k
fl

Di C.)

1

T
6'

T
7'
T
8'
T
9

INC :50
l INC:50 G ll
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Check to determine if correct
moderator and fuel thermal
conductivities were used in
moderator calculation. If not,
an iteration on the average
thermal conductivities is
performed.

Evaluation of fuel temperature
at the quarter, half, and three
quarter diameter points.

Printout for increment.

Check to see if entire core
has been calculated.
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INC a INC+1

Z a Z -AL
c c

T
B1

T
B2

P
1
a P

2

ciOld -4.1"

P°132/111B2

U
B
maG/p

RemU
B
D
c
R/p(TB2)

f=0.184/Re°
.2

AP
F
.i.10f(AL/D

c
)pU

2
/2g

c

AP 8,QU
2
/2g

E c

Initializing for next increment.

Calculation of exit pressure

losses.

Calculation of coolant core

exit conditions.

Printout of coolant core exit

conditions.
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5.5 Code Examples

The following two examples demonstrate the use of the HTGR Thermal-

Hydraulics Code for calculating the thermal-hydraulic behavior of a

typical HTGR.

Example 8.

A HTGR core is composed of 3000 right hexagonal prism fuel elemeAt3,

each 16 in. across the flats and 32 in. high. The elements are stacked

eight high in the core. The uranium-thorium fuel in carbide form fits

tightly into 0.8 in. diameter fuel holes. The reactor is cooled by the

downward flow of helium which enters at 500 F, 600 psis and flows through

1.0 in. diameter coolant holes. The spacing between the fuel and coolant

holes is 1.25 in. The average coolant velocity in the inlet of the core

is 280 ft/sec. The average fuel rod produces 4.2 kw/ft. Assume an

extrapolation length equal to 5% of the core height. Determine the

magnitudes and locations of the maximum fuel temperature and the maximum

moderator temperature.

Solution.

The mass velocity, extrapolated core height, and peak volumetric

thermal source strength must first be computed from the data given.

2

P
(600 1 1)(144 1y.)

in in ft
(280 11-)(3600 sec )

G pinUB in= R T B in sec
(386

ftlf)(
500 + 460) R

m 2.35 x 10
5

ibm/hr-ft
2

H
e

= H + 2L
e

= H 2(0.05H) = 1.10H
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= (1.10)8(32 in.) = 281.6 in. = 23.47 ft

q'3' = 2PenHe Df
2

sin(111/2 He)]

= 2(4.2 kw/ft)(8)(32 in.)(
ft

)(3413 Btu/kw-hr)/{(23.47 ft)(1.0 in.)
2

12 in.

(ft/12 in.)2 sink(8)(32 in.)/2(281.6 in.)])

= 3.79 x 10
6

Btu/hr-ft3.

From the output printout of the code (next 7 pages) we find,

T = 889.7 P at Z = -3.63ft at node 1
mod max

T
fuel max

= 962.9 F at Z = -2.77ft.
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******************************
HTGR THERMAL-HYDRAULICS CODE
******************************

INPUT DATA

FUEL 00 COOL U.D. SPACING ACTIVE CORE LENGTH

(INCH) (INCH) (INCH) (INCH)

0.8000 1.0000 1.2500 256.00

MASS VELOCITY CORE INLET TEMPERATURE CORE INLET PRESSURE

(LBJHR-FT**2) (F) (PSIA)

0.2350E C6

VOLUMETRIC THERMAL
SOURCE STRENGTH
(BTU/HR-FT**3)
0.3790E C7

OPTION 1

500.00

EXTRAPOLATED HEIGHT

(INCH)
281.60

LND OF INPUT DAT A
*******************************

COORDINATES OF THE NODES

600.00

DFU=0.0667

NUDE NUMBER

DC0=0.0833

X COORDINATE

5=0.1042

Y COORDINATE

1 0.18750E-01 0.00000E 00

2 0.23216E-01 0.16667E-01
3 0.35417E-01 0.28868E-01

4 0.00000E 00 0.00000E 00

5' 0.11608E-01 0.16667E-01
6 0.11608E-01 0.28868E-01
7 0.20853E-01 0.54127E-01

0.00000E 00 0.28868E-01
0.00000E 00 0.48544E-01
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PATH

S4)
S14

SHAPL FACTOPS.

SHAPE FACTuk

0.5625000E 00
0.3117972E.00

S15 0.4d2212CE 00
5120' 0.2142628E 00
Si2F 0.8660254E 00
Si) 0.116101GE 01
S26 0.4999998E 00

0.4757009E 00
0.8660254E 00
0.9514017E 00
0.4751009E 00
.2949650E 00

Suck 0.1373098L 01
Sic) 0.4310531E JO
So? 0.4276S2CEJ0
S69 0.3509365E 00
Sj7 U.18261621: OU
S79 0.4106829F. JO

AT IHL INLET OF THE CUfiL

CHANNEL AVE: VELOLITY VEYNOLOS # FRICTION FACTOR
(FT/SEC)
279.97 280285.9 0.0150

304X4c4c******cxz**2":****4*******4c*****************4:*************g:***4c1%*****s
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NU Z -LUC TO 11/4 T1/2 T3/4

TN(1) TN(2) TN(3) TN(41 TN(5) TN(6)

TN(7) TN(8) TN(9) TSURF TBULK HTCOF

1 10.453 551.7 551.2 548.2 543.8

538.7 537.7 536.5 536.9 535.8 533.1

TF

DELP

537.7

525.7 532.6 525.4 525.6 500.6 690.9 21.86

2 10.027 569.8 569.1 565.1 559.3 551.1

552.5 551.2 549.6 550.1 548.7 545.1

535.3 544.5 535.0 535.1 502.0 691.0 21.90

3 9.600 588.4 587.5 582.5 575.2 56!..0

566.8 565.1 563.1 563.7 562.0 557:4

545.3 556.7 544.8 545.0 503.8 691.1 21.96

4 9.173 607.1 606.1 600.1 591.4 579.2

581.3 579.3 576.8 577.6 575.6 570.1

55.).4 569.2 .'554.8 555.1 506.0 691.2 22.02

5 8.747 626.0 624.8 617.9 , 607.8 593.6

596.0 593.7 590.8 591.7 569.3 582.9

565.8 561.9 565.1 565.5 508.5 691.4 22.09

6 6.320 645.0 643.6 635.7 624.2 608.1

610.9 608.2 605.0 606.0 603.2 595.9

576.3 594.7 575.6 576.0 .511.5 691.6 22.17

1 7.893 663.9 662.4 653.6 640.7 622.7

625.9 622.9 619.2 620.3 617.3 609.0

587.0 607.7 586.2 586.6 514.8 691.9 22.27

8 7,467 682.8 681.2 671.5 657.3 637.4

6409 637.6 633.5 634.8 631.3 622.2

597...; 620.1 596.9 597.4 518.4 692.1 22.37

9 7.040 701.6 699.8 689.2 673.8 652.1

655.9 652.3 647.8 649.2 645.5 635.4

608.7 633.8 607.7 608.2 522.4 692.4 22.48

10 6.o13 720.2 718.3 706.9 690.1 666.7

670.9 667.0 662.1 663.6 659.5 646.6

619.6 646.9 618.5 619.1 526.7 692.7 22.60

11 6.187 738.6 736.5 724.3 706.4 681.3

685.5 681.5 676.3 677.9 673.5 661.8

63u.6 659.9 629.3 629.9 531.3 693.0 22.72
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12 5.760 756.0 754.4 141.4 722.3 695.7
7uj.5 . 695.9 690.4 692.3 667.4 674.8

641.4 872.8 640.1 643.8 536.2 693.3 22.36

13 5.333 774.3 771.9 756.2 138.3 709.9
714.9 716.2 7J4.2 706.0 701.1 687.7

652.3 665.6 650.8 651.5 541.4 693.7 23.30

14 4.907 791.5 789.0 774.E: 753.4 723.8
729.2 724.1 717.9 719.8 714.5 700.4

663.0 698.2 661.5 662.2 546.9 654.1 23.15

15 4.480 808.1 805.6 790.5 768.4 737.5
743.1 731.8 731.2 733.2 727.7 712.9

673.5 710.6 672.0 671.7 552.6 694.5 23.31

iu 4.053 824.2 821.6 805.9 782.9 150.8
756.0 751.1 744.3 746.3 140.6 725.1

683.9 722.6 682.3 683.1 558.5 694.9 23.4/

17 3.027 839.7 836.9 820.7 796.9 763.7
769.8 164.0 756.9 759.0 753.0 736.9

094.1 734.4 692.4 693.2 564.7 695.3 23.64

16 3.200 854.5 851.6 834.9 810.4 776.2
782.5 776.5 769.1 771.3 765.1 748.4

764.0 7,45.8 702.3 703.2 571.0 695.7 23.81

14 2.773 863.5 865.6 848.4 823.3 788.1
794.6 788.5 780.9 783.1 776.7 759.5

113.7 756.8 711.9 712.8 577.5 696.1 23.99

23 2.347 881.7. 878.7 061.2 835.5 799.5
806.2 799.9 792.1 794.4 787.8 770.2

723.1 767.4 721.2 722.2 584.1 696.6 24.17

21 1.920 894.1 891.0 873.1 847.6 810.4
617.2 813.8 632.8 805.1 796.4 780.3

7:)2.1 777.4 733.2 731.2 590.9 697.0 24.36

22 1.493 905.5 902.4 884.3 857.7 820.6
827.5 821.0 812.9 815.2 8,08.4 789.9

140.8 787.0 73d.8 739.8 597.8 697.5 24.55

23 1.067 716.0 912.9 894.5 867.7 830.1
831.2 830.5 822.3 824.7 817.7 799.0

749.1 796.0 147.1 748.1 604.1 697.9 24.74
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24 0.640 925.5 922.4 903.9 876.8 839.0
846.1 839.4 831.1 833.4 826.4 807.5

756.9 804.4 754.9 755.9 611.7 698.4 24.94

25 0.213 934.0 930.8 912.3 885.1 847.1
854.3 847.5 839.1 841.5 834.4 815.3

764.4 812.3 762.4 763.4 618.8 698.9 25.13

26 -0.213 941.4 938.3 919.7 892.5 854.5
861.6 854.9 846.5 848.8 841.7 822.5

771.3 819.5 769.3 770.3 625.8 699.3 25.33

27 -0.640 947.8 944.6 926.1 899.0 861.0
868.2 861.4 853.0 855.4 848.3 829.0

777.8 826.0 775.8 776.8 632.9 699.8 25.52

28 1..U67 953.0 949.9 931.5 904.5 866.8
873.9 867.2 858.8 861.1 854.1 834.9

783.8 831.8 781.8 782.8 639.9 700.2 25.72

.29 -1.493 957.1 954.0 935.8 909.0 871.7
878.8 872.1 863.7 866.1 859.0 840.0

789.2 837.0 787.2 788.2 646.8 700.7 25.91

3U -1.920 960.1 957.0 939.0 912.6 875.7
882.8 876.1 867.9 870.2 863.2 844.4

794.1 841.4 792.2 793.1 653.7 701.1 26.i0

31 -2.347 961.9 958.9 941.2 915.? 878.9
885.8 879.3 871.2 873.5 366.6 848.0

798.5 845.1 796.5 7975 660.5 701.6 26.".!9

32 -2.773 962.5 959.6 942.1 916.8 881.2
888.0 881.6 873..6 875,9 869.1 E50.9

812.3 848.0 800.3 801.3 667.1 702.0 26.48

33 -3.200 962.0 959.2 942.2 917.4 882.6
889.3 883.0 875.2 877.4 870.8 853.0

805.5 850.1 803.6 804.5 673.6 702.4 26.66

34 -3.627 960.4 957.6 941.1 917.0 883.2
889.6 863.6 87640 876.! 871.7 854.3

808.1 851.6 806.3 807.2 680.0 702.8 26.84

35 -4.053 957.6 954.9 938.9 915.5 882.8
889.1 883.2 875.9 877.9 871.7 854.9

810.1 852.2 808.3 809.2 686.1 703.2 27.01
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S5'97 4°90L L'REL L'99L h1199L T'E38 I'Lql 
1'409 5°011 6'719 1'719 6°419 1°119 

L'41R 511/79 9'9E9 9'749 9°E49 EL1'6 Le, 

L4'97 S'901 T'9EL 9'16L 416L 9'019 7'76/ 
0'718 1'619 7'779 £'779 9'479 r/29 

4'479 7'6E9 L'649 6'959 1°959 141°9 qy 

CE'97 T°90 Z°F.C.L E'96L 6656/ 0'919 9'96L 
4°619 's*/.79 0'1E9 6'679 9'EE9 96(7E9 

4E8 Z"C.: 7'799 E'OL9 L'TL9 07;7'9 54 

Fi"l'Z 6'591 6'67L £'009. 9'66/. 5'479 9..'219 
l'14?8 565E9 ns6ce 611/E9 0'749 4'549 
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T°7£9 9°749 4'949 7115473 1'649 4'E59 

S'649 l'OLP 9°493 9'469 5968 194'1 e4 
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F6'LZ Z'SOL 6°LIL L'909 0'909 7'049 F'6C9 
7'749 5'45P 1'658 9°159 OsE99 E'199 

L'79P 9'998 0'406 9'516 9116 ST969 74 

61.*LZ 6°40L E"EIL E'OT9 9'609 1'448 0°1'19 
7'942 4'659 E'498 L'798 47°999 1'VL9 

T'999 

:.°LZ 

66E59 E'716 6'476 

9°4701 4,b901 £'119 
4'649 4'£99 9'999 

Ts/26 /RT'9 C4 
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CS'LZ E'40L 7°E01 L'IT9 6'019 9'649 S'ZIR 
6'159 L'999 Z°7L9 4'019 6'9/41 T°799 

9'919 4'506 0'976 1'046 5'746 EEC'S SE 

4E'LZ 6'EOL L'L69 S'119 9'01R 7°158 F'719 
L'ES9 7'69R 6'4/.8 t'EL8 8°6/8 E11598 

5'619 L'606 eIF6 1'946 9'946 L06'4 LE 

91'17 9'EOL 0'769 9'019 9609 1'759 S'1T9 
L'458 6'0L9 9'9/.8 6'4L9 0'709 961 29 

9'199 T'ET6 L'5£6 0'756 1'ES6 194,°47 clf. 
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48 -9.600 828.8 8F(.0 822.8 815.1 804.5

806.5 804.6 802.3 802.9 801.0 795.6

781.4 794.8 780.9 781.1 740.8 706.6 28.61

49 - 10.027 813.3 812.5 808.4 802.3 793.7

795.3 793.8 791.9 792.5 790.9 786.6

775.3 785.9 774.8 775.0 742.6 706.7 28.67

50 - 10.453 797.1 796.6 793.4 7e8.8 782.4

783.6 782.5 781.1 781.5 780.3 777.1

768.6 776.6 768.3 768.4 744.0 706.8 28.72

'' 4************************** *** * * * * * *** * *** * * * **** * * * * * ** ** * * * * * ** * * * ***** * ** *1

EXIT PRESSURE EXIT TEMPERATURE
IPSIAI (F/

584.2 744,6

POWER PLR UNIT LENGTH (KW /FT) : 2.69

1****************************************************************************v7.!
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Example 9.

The effect of undersized coolant holes on HTGR thermal-hydraulic

performance is to be studied. Consider the HTGR described in Example 8

but with a coolant hole diameter of 0.8 in. (instead of 1.0 in.).

Compare the following thermal-hydraulic parameters for the "undersized

coolant hole" and "normal" flow channels:

a. Location and magnitude of maximum fuel temperature.

b. Location and magnitude of maximum moderator temperature.

c. Exit coolant twmpetature.

Solution.

Each flow channel in the core will experience the same pressure

drop. The "undersized coolant hole" channel has a smaller diameter and

hence will pass less flow for the same pressure loss (as shown in

Example 6). To assure approximately the same pressure loss as in the

"normal" channels, the mass velocity of the "undersized coolant hole"

channel must be adjusted. From the results of Example 6,

2/3
G
UCH

= G
N

(D
UCH

/D
N

)

= 2.35 x 10
5

(0.8/1.0)
2/3

= 2.025 x 10
5 lbm/hr-ft

2

The input to the HTGR Thermal-Hydraulics Code is the same as that

for Example 8 except for the new value of G and the undersized Dc.

From the code (printout next 7 pages) the following results are ob-

tained:

a. The maximum fuel temperature is now 1189F and occurs at

Z = -3.63 ft compared with 963 F at Z = -2.77ft for the

"normal" channel.
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************************3014**#
HTGR THERMAL-HYDRAULICS CODE
******************************

INPUT DATA

FUEL 0.0
(INCH)
0.8000

COOL 0.0.
(INCH)
0.8000

SPACING
(INCH)

1.2500

ACTIVE CORE LENGTH
(INCH)

256.00

MASS VELOCITY CORE INLET TEMPERATURE CORE INLET PRESSURE

(LB/HR-FT**2) (F) (PSIA)

0.2025E 06 500.00 600.00

VOLUMETRIC THERMAL
SOURCE STRENGTH
(8TU/HR-FT**3)
0.3790E 07

OPTION 1

EXTRAPOLATED HEIGHT

( INCH)
281.60

END OF INPUT DATA
*******************************

COORDINATES OF THE NODES

OFU=0.0667

NODE NUMBER

DC0=0.0667

X COORDINATE

S=0.1042

Y COORDINATE

1 0.18750E-01 0.00000E 00
2 0.23216E-01 0.16667E-01
3 0.35417E-01 0.28868E-01
4 0.00000E 00 0.00000E 00
5 0.11608E-01 0.16667E-01
6 0.11608E-01 0.28868E-01
7 0.16667E-01 0.61343E-01
8 0.00000E 00 0.28868E-01
9 0.00000E 00 0.56878E-01
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SHAPE FACTORS.

PATH SHAPE FACTOk

S45 0.5625C00E 00
S14 0.3117972E 00
S15 0.4822120E 00
S12M 0.2142628E 00
S12F 0.8660254E 00
S25 0.1161010E 01
S26 0.4999598E 00
S23M 0.4757009E 00
S23F 0.8660254E 00
S56 0.9514017E 00
S58 0.4757009E 00
S89 0.2072095E 00
S66 0.1732048E 01
S36 0.6331320E 00
S67 0.3545911E 00
S69 0.2210881E 00
S37 0.7788467E-01
S79 0.8202949E 00

AT THE INLET OF THE CORE

CHANNEL AVE. VELOCITY PEYNULDS # FRICTION FACTOR
(FT/SEC)
241.25 193218.4 0.0161

**************#4c*******##*#*****************************m**************It**
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NO 21.0C TO T1/4 11/2 T3/4
TN(1) TN(2) TN(3) TN(4) TN(5) TN(6)

TN(7) TN(8) TN(9) TSURF TBULK HTCOF

1 10.453 564.7 564.2 561.2 556.8
551.7 550.7 549.5 549.8 548.8 546.0

'TT

DELP

550.7

534.8 545.6 534.6 534.7 501.1 641.3 21.86

2 10.027 588.3 587.6 583.6 577.8 569.6
570.9 569.6 568.1 568.5 567.1 563.3

548.4 562.8 548.1 548.3 503.6 641.5 21.93

3 9.600 612.6 611.7 606.7 599.4 589.2
590.9 589.2 587.3 587.8 586.0 581.3

562.5 580.6 562.2 562.4 506.9 641.7 22.02

4 9.173 637.4 636.4 630.4 621.6 609.3
611.4 609.4 607.0 607.6 605.5 599.9

577.2 599.0 576.8 577.0 510.8 642.0 22.13

5 8.747 662.6 661.4 654.4 644.2 629.9
632.4 630.0 627.3 628.0 625.5 618.9

592.3 617.9 591.8 592.1 515.5 642.3 22.26

6 8.320 688.2 686.8 678.9 667.3 651.0
653.8 651.1 647.9 648.7 645.9 638.3

607.8 637.2 607.3 607.5 520.8 642.6 22.40

7 7.893 714.0 712.5 703.6 690.6 672.4
675.6 672.5 669.0 669.9 666.7 658.1

623.7 656.8 623.1 623.4 526.8 643.0 22.57

8 7.467 740.0 738.4 728.6 714.2 694.1
697.6 094.3 690.3 691.3 687.8 678.2

639.9 676.7 639.2 639.5 533.4 643.4 22.75

9 7.040 766.1 764.3 753.6 737.9 716.0
719.9 716.2 711.8 712.9 709.0 698.5

656.3 696.9 655.6 655.9 540.6 643.9 22.94

10 6.613 792.2 790.3 778.7 761.8 738.1
742.3 738.2 733.5 734.6 730.4 719.0

672.9 717.2- 672.2 672.5 548.4 . 644.4 23.15

11 6.187 818.2 816.1 803.7 785.6 760.1
764.7 760.4 755.2 756.4 751.9 739.5

689.7 737.6 688.8 689.3 556.8 644.9 23.38
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12 5.760 844.0 841.8 828.6 809.j 782.2
787.1 782.4 776.9 77d.2 773.3 760.0

706.5 758.0 705.6 706.1 565.7 645.5 23.62

13 5.333 869.5 867.2 653.2 832.8 804.2
809.4 804.4 798.6 799.9 794.7 780.5

723.4 778.3 722.4 722.9 575.1 646.0 23.88

14 4.907 894.7 892.2 677.5 856.1 826.0
831.5 826.3 820.1 821.5 816.0 800.9

740.3 798.6 739.3 739.8 565.0 646.7 24.14

15 4.480 919.4 916.7 901.4 679.0 847.6
853.3 847.9 841.3 842.13 637.0 821.1

757.0 818.6 756.0 756.5 595.4 647.3 24.43

16 4.053 943.4 940.7 924.b 901.5 868.8
e74.b 869.1 8b2.2 863.6 857.6 840.9

(13.7 838.4 772.6 773.1 606.1 648.0 24.72

17 3.627 966.9 964.1 941.6 923.4 889.6
895.9 889.9 682.8 884.3 677.9 660.5

790.1 57.8 789.0 789.5 611.3 648.6 25.02

10 3.200 989.6 986.7 969.6 944.8 909.9
916.4 910.2 932.8 904.4 897.7 879.6

606.4 876.8 805.2 805.8 628.7 649.3 25.33

19 2.773 1011.4 1008.4 990.9 965.4 929.6
936.4 929.9 922.3 923.9 917.0 898.2

822.3 895.3 821.0 821.6 640.5 650.0 25.65

20 2.347 1032.3 1029.2 1011.4 985.3 948.7
955.6 949.0 941.1 948:.8 935.7 916.2

837.9 913.2 836.6 837.2 652.6 650.8 25.98

21 1.920 1052.4: 1049.1 1030.9 1004.3 967.0
974.1 967.4 959.2 960.9 953.6 933.7

653.1 930.6 851.8 852.4 61:4.8 651.5 26.32

2G 1.493 1671.0 1067.8 1049.4 1022.4 984.6
991.8 984.9 976.6 976.3 970.8 950.4

867.3- 947.2 866.5 867.2 671.3 b52.2 26.66

23 1.067 1088.6 1085.4 1066.7 1039.4 1001.2
1008.6 1001.6 993.1 994.8 987.2 966.3

582.1 963.1 880.8 881.4 689.9 653.0 27.01
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24 0.640 1105.0 1101.8 1083.0 1055.5 1016.9
1024.4 1017.3 1008.7 1010.4 1002.7 981.5

895.9 978.2 894.5 895.2 702.6 653.7 27.36

25 0.213 1120.1 1116.9 1098.0 1070.3 1031.6
1039.2 1032.0 1023.4 1025.1 1017.2 995.8

909.1 992.4 907.7 908.4 715.4 654.4 27.71

26 -0.213 1133.8 1130.6 1111.7 1084.0 1045.3
1052.9 1045.6 1036.9 1038.6 1030.7 1009.1

921.7 1005.7 920.2 921.0 728.2 655.2 28.06

27 -0.640 1146.1 1142.9 1124.0 1096.4 1057.8
106S.5 1058.2 1049.4 1051.1 1043.2 1021.5

933.6 1018.1 932.2 932.9 741.0 655.9 28.42

28 -1.067 1156.9 1153.7 1135.0 1107.5 1069.1
1076.8 1069.5 1060.8 1062.4 1054.5 1032.8

944.8 1029.4 943.4 944.1 753.7 656.6 28.77

29 -1.493 1166.3 1163.1 1144.5 1117.3 1079.3
1086.9 1079.6 1071.0 1072.6 1064.7 1043.0

955.4 1039.6 953.9 954.7 766.3 657.3 29.12

30 -1.920 1174.0 1170.9 1152.6 1125.7 1088.1
1095.7 1088.5 1079.9 1081.5 1073.7 1052.1

965.1 1048.8 963.7 964.4, 778.7 658.0 29.47

31 -2.347 1180.2 1177.2 1159.1 1132.7 1095.7
1103.2 1096.1 1087.6 1089.2 1081.4 1060.2

974.1 1056.8 972.7 973.4 791.0 658.7 29.81

32 -2.773 1184.8 1181.8 1164.1 1138.2 1102.0
1109.3 1102.3 1094.0 1095.5 1087;9 1067.0

982.3 1063.7 980.9 981.6 803.1 659.4 30.15

33 -3.200 1187.8 1184.8 1167.6 1142.3 1106.9
1114.1 1107.3 1099.1 1100.6 1093.1 1072.6

989.5 1069.4 988.3 989.0 814.8 660.0 30.48

34 -3.627 1189.2 1186.3 1169.5 1144.9 1110.5
1117.5 1110.9 1102.9 1104.3 1057.0 1077.1

996.1 1073.9 994.8 995.5 826.3 460.6 30.81

35 ."4.053 1188.9 1186.1 1/69.9 1146.1 1112.8
1119.5 1113.1 1105.3 1106.7 1059.7 1080.3

1001.7 1077.2 1000.4 1001.1 837.5 561.2 31.12
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3u -4.480 1167.0 1184.4 1168.7 1145.7 1113.6
1120.2 1113.9 1106.5 1107.8 1101.0 1082.3

1606.4 1079.3 1005.2 1005.8 848.2 661.8 31.43

37 -4.907 1183.6 1181.0 1166.C. 1143.9 1113.1
11/9.4 1113.4 1106.3 1107.6 1101.0 1083.0

1010.2 1080.2 1009.0 1009.6 858.6 662.3 31.73

38 -5.333 1178.5 1176.1 1161.7 1140.7 1111.3
1117.3 1111.6 1104.8 1106.0 1099.8 1082.6

1013.1 1079.9 1012.0 1012.5 868.5 662.9 32.01

39 -5.7.)0 1171.9 1169.6 1156.0 1136.1 1108.2
1113.8 1108.4 1102.0 1103.1 1097.2 1080.9

1015.0 1078.4 1013.9 1014.5 677.9 663.4 32.28

40 -6.187 1163.8 1161.6 1148.6 1130.0 1103.7
1109.1 1104.0 1097.9 1099.0 1093_4 1078.1

1016.0 1075.7 1015.0 1015.5 886.8 663.8 32.54

41 --.6.613 1154.3 1152.2 1140.2 1122.6 1098.0
11j3.0 1098.2 1092.5 1093.6 1088.3 1074.0

1016.1 1071.8 1015.1 1015.6 895.2 664.3 32.78

42 -7.J40 1143.2 1141.3 1130.2 1113.9 1091.j
1095.7 1091.3 1086.0 1086.9 1082.1 1068.8

1015.2 1066.8 1014.3. 1014.7 903.0 664.7 33.01

43 -7.467 1130.9 1129.1 1116.9 1103.9 1082.9
1087.1 1083.1 1078.2 1079.1 1074.7 1062.5

1013.3 1060.6 1012.5 1012.9 910.2 665.0 33.2.

44 -7.893 1117.2 1115.6 1106.3 1092.6 1073.5
1077.4 1073.7 1069.3 1070.1 1066.1 1055.1

1010.6 1053.4 1009.8 1010.2 916.8 665.4 33.42

45 -8.320 1102.2 1100.8 1092.4 1080.2 1063.1
1066.5 1063.3 1059.3 106U.1 1056.5 1046.6

1006.9 1045.1 1006.2 1006.5 922.8 665.7 33.59

46 -8.747 1086.1 1084.8 1077.5 1066.7 1051.6
1054.6 1051.7 1046.3 1048.9 1045.8 1037.2

1002.3 1035.8 1301.7 1002.0 928.1 666.0 33.75

47 -9.173 1068.6 1067.7 1061.4 1052.1 1039.1
1041.7 1039.2 1036.2 1036.8 1034.1 1026.7

996.7 1025.5 996.2 996.5 932.7 666.2 33.90
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48 -9.600 1050.5 1049.6 1044.3 1036.5 1025.6
1027.7 1025.7 1023.2 1023.7 1021.4 1015.3

990.3 1014.3 989.9 990.1 936.7 666.4 34.02

49 -104027 1031.2 1030.5 1026.2 1019.9 1011.2
1012.9 1011.3 1009.3 1009.7 1007.9 1003.0

983.1 1002.2 982.7 982.9 939.9 666.6 34.12

50 -10.453 1011.0 1010.5 1007.2 1002.5 996.0
997.2 996.0 994.5 994.8 993.5 989.8

974.9 989.2 974.7 974.8 942.5 666.7 34.21

44**30344c****************4444****44******###4430,0*44*###*#*####****************#

EXIT PRESSURE EXIT TEMPERATURE
(PSIA) (F)

583.5 943.6

POWER PER UNIT LENGTH (KW/FT) : 2.69

4c******444c*****************************M*********************###**********##
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b. The maximum moderator temperature is now 1120F and occurs at

node 1 at Z = -4.48ft compared with 890 F for node 1 at Z = -3.63

ft for the "normal" channel.

c. The helium exit temperature is now 944F compared to 745 F

for the "normal" channel.



5.6 Listing of Code

C

VPI HTGR THERMAL-HYDRAULICS CODE.

C

C,"

INTEUER UP

REAL KFU,KM0,103C,NUIMOOTIKFUI,KFU2

GIMENSICN T(9),A(81)0(9)

C

T'E'MPERATURE DEPENDENT PROPERTIES.

KFU(T17-0.15488E+02-0.72135E-02*1+0.46776E-05*T**2-C.10256E-08*

< T**3

KMO(T)=0.53309E+02-0.31556E-01*1+0.6629E-05*T**2

KBC(T)=0.811425E-01+0.100714E-03*T-0.142851E-07*T**2

VIS(T)=u.40903E-01+0.6274E-04*T-0.96155E-O8 *T**2

READING INPUT DATA.

READI515)0FU,DCO,S0

5 FORMAT(3F10.4.F10.1)

READ(5110)GIN,TIN,PIN

10 FORMATIE10.3,2F10.1)

READ(5,15)QTPOIHEIOP

15 FORMAT(E10.31F10.1,110)

PRINTOUT OF INPUT DATA.

wRITE(6,20)

C0 FORMATI1H112X///////15X0******************************1/15X1

('HTGR THERMALHYDRAULICS CODE'/I5X0******************************



0//15X0INPUT DATA' //)

WRITE (b,25) DFU,DCO,S,H

25 FORMAT(I5X0FUEL 0.0',6X,'CLuL C.D.',7X,'SPACING°17X0ACTIVE CORE

< LENGTH'16X1/15X0(INCWOW(INCH)',9Xr
<1 (INCH)1,14X," IINCHP,I4X/15X,F6.419X,F6.419X,F6.49

<14X,F6.2,160)

WRITEI6,30)GINITINIPIN

30 FORMAT(15X,'MASS VELOCITY',44,1CORE INLET TEMPERATURE',3X,

<'CURE INLET PRESSUREV15X,I(Lo/hRFP;*2)',13X1' (F1',20X,'IPSIAP/

<15X,E11.4,I4X,F7.2,17X,F7.2/)

WRITE(6,35)QTPO,HE

35 FORMAT(15X0VOLUMETRIC THERL'AL1,4X0EXTRAPOLATED HEIGHT' /15X,'SOUR

<CE STRENGTH1/15X0IBTUOHRFT414c3/1,11X0IINCH11/15X,E11.4,14X1,

<F6.2//)

WRITE(6,4010P

40 FORMAT(19X0OPTION1,3X,I2///15X0END OF INPUT DATA',/
<15x,-********);**********v*tuk******Aym)

C

CJNVERTING INCHES TO FEET.

DFU:DFU/12.0

S=S/12.0

DCLI=DCO/LZ.0

N= H/12.0

hE=HE/12.0

C

C A SYSTEM OF NODES IS SET UP FOR THE FINITEDIFFERENCE ANALYSIS

C OF HEAT TRANSFER IN THE GRAPHITE. THE ORIGIN OF THIS SYSTEM,

C THE CENTER OF THE FUEL,ANU THE CENTER OF THE COOLANT HOLE FORM

C A RIGHTANGLED TRIANGLE. THE 'X',AND 'Y' COORDINATES OF THE

NODES ARE CALCULATED IN TERMS OF S,THE SPACING, DFU,THE DIA

C METER OF THE FUEL,AND DCO/THE DIAMETER CF THE COOLANT HOLE
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AS FOLLOWS:

PI=ARCOS(-1.0)

XI=S*COS(P1/3.0)-0.5*DFU

Y1=0.0

X2=S*COS(P1/3.0)-0.5*DFU*COSIPI/6.01

Y2=0.5*DFU*SIN(PI/6.0)

X3=S*COS(PI/3.0)-0.5*DFU*COS(P1/3.0)

Y3=0.5*DFU*SIN(PI/3.0)

X4=0.0

Y4=0.0

X5=X2/2.0

Y5=Y2

X6=X5

Y6=Y3

X7=0.5*DCC*SIN(PI/6.0)

Y7=S*COS(P1/6.0)-0.5*DCO*COSIPI/6.01

X8=0.0

Y8=Y3

X9=0.0

Y9=S*COS(P1/6.01-0.5*DCO

C

THE FOLLOWING SEGMENT CALCULATES THE CONDUCTION SHAPE FACTORS

ASSOCIATED WITH THE HEAT TRANSFER BETWEEN THE NODES. EACH SHAPE

C FACTOR CORRESPONDS TO HALF THE SUM OF THE COTANGENTS OF THE

ANGLES ENCLOSING THE PATHS.

C

S45=0.5*(X5/Y5+(X145)/Y5)

S14=0.5*(COTANIATAN(X5/Y5)+ATAN((X1-X51/Y5)))

S15=0.5*(X5/Y54(X2-X1)/Y2)

512M=0.5*(X1.45)/Y5

S12F=0.5*COTAN(PI/6.0)



S22=i).5*(COTAN(ATANUX2-X11/Y2)+ATAN((XI-X5)/Y51)+CUTAN(ATANHX?

< -X6)/(Y6-Y2))+ATAN((Xb-X5)/(Y6-Y5))))

S2b=u.5*((X6-X5)/(Y6-Y5)+(X3-X2)/(Y3-Y2))

S23M=C.5*(1)(2-X6)/(Y6-112)1

S23F=0.5*COTAN(P1/6.0)

556:0.5*((X2-X6)/(Y6-Y2)+W(Y6-Y5))

S56=0.5*((X6-X5)/(Yb-Y5) +X5/(Y8-Y5))

Sa9=0.5*X6/(Y9-Y6)

Sb3=0.5*((Y9-Y8)/X6+COTAN(ATAK(x5/(Y8-Y5)1 +ATAN1M-Xal/

< (Y6-Y5)111

S36=0.54(COTANCATAN((X7-X6)/(Y7-Y6))+ATANUX3-X7)/(Y7-Y3))1+

< COTANIATANUX2-X6)/(Y6-Y2))+ATAWX3-X2)/(Y3-Y2))))
St7r)5*(COTAN(PI-ATAN(X6/(Y9-Y6))-ATAN(X7/(Y7-Y9)))+ (X3-X7)/

< (Y7-Y3) )

So9=u.5.4CGTAN(PI-PI/3.Ci-ATAN(( Y7-'6)/X7)-ATAN((X3-X7)/11(7-Y3)1-

< ATANI(X7-X6)/(Y7...Y6)))

S37=0.5*(X7-.X6)/(Y7--Y6)

579:045*COTAN(PI-ATAN(IY9-YOUX6)-ATANC(Y7-Y0/(X7-X6)))

PRINTOUT OF THE COORDINATtS AND THE SHAPE FACTORS.

WRITE (6,45) UFU,OCO,S

4) FORMAT(/30WC6GRDINATES ;t7 THE NUDES1//15XODFU=',F6.4?

<10WOCC:11F0.4910X0S:11F0.4//)
WRITE(6150) X1IYI,X2020(.03,X4,Y40505tX0,116,X707,X80b0(9,Y9

50 FORMAT(15X,,NUDE NUMBER'15X0X GUORDINATE119X0Y COORDINATE'/L9X,

< '1',IOXIEL15113XtElle5/2At'2'flafEll.5tIOX1EJA.5/20X0Ptit.X9

< E11.5,10X,E1145/20X041,11-XtEllo5t1OX,E11.5/20X915'110X,E11.511jA

< vElls5/20X00,10X9E11.511.0X,E11.5/20X071a0XtE11.5110XIE11.5/
< 2oX,'8'11A,E11.5110XtL11.5/20x1191,10X,E11.5110X,E11.5/)

tsRITE(6,55)

FORMAT(1H112X//////)
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WRITE(6.60) S45.S141S15.512M.S12F.S25.S26/523M.S23F.S561S581S897

< S68,S361S67.569.S37.S79

60 FORMAT(22X,'SHAPE FACTORS.W/115X.IPATHIgIOXOSHAPE FACTOR' //

< 15Xp'S451.10X.E14.7/15X0S14',10X.E14.7/15X0S151.10X.E14.7/

< 15X0S12M1. 9X.E14.7/15X0S12Fit 9X.E14.7/15X0S251.10X.E14.7/

< 15X0S26'.10X.E14.7/15X0S23M't 9X,E14.7/15X.152011 9X,E14.7

< /15X0S56'.10X.E14.7/15X0S581.10X,E14.7/15X0S89',10X,E14.7/
< 15X015681.10X.E14.7/15X0S361.10X.E14.7/15X0S671110X.E14.7/

< 15X0S691.10X,E14.7/15X.IS371.10X.E14.7/15X.ISN'010X.E14.7///1

C

MASS FLOW RATE CALCULATION.

C

MDOT=GINSPI*DC0**2/4.0

C

C SELECTION OF AXIAL CALCULATION INCREMENT.

C

DELL=H/50.0

C

CALCULATION OF PRESSURE LOSS AT INLET OF CORE.

C

RHOOIN*144.0/(T10460.0)/386.0

UPGIN/RH0/3600.0

RE=UB*DCO*RHO/VISITIN)*3600.0

F=0.184/RE**0.2

DELPF=F*DELL*RHOSUB**2/0C0/2.0/32.2*10.0

DELPES0.5*RHO*UB**2/2.0/32.2

C

C PRINTOUT OF CORE INLET CONDITIONS.

C

WRITE(6.65)

65 FURMAT(15X,'AT THE INLET OF THE CORE'//)

WRITE(6,70) U6,RE,F



/0 FORMAT(13X0ChANNEL AVE. VELOCITY ',2X,'REYNULDS 41,3WFRICTUA

<ACTOR1/21X11(FT/SECP/21X,F6.2,12Xtra.1,8X,F7.4//)

WRITE (5,75)

75 FORMAT(0*************0#14*********4****:*******************t;
( * *******4*******************4***;4*;*;*****************************

<11///)

1. PRINTOUT 6F COLUMN hEAOINGS.

C

30 FORMAT(1H112X///////15X,'N01,7X0Z-LOC1,5X,ITOIOXOT1/41,5X,

OT1/2115X1IT3/4',7XOTFI/20XOTN(1)1,4X,ITN(2)10XOTN(3)°,4Xt

OTN(4)°,4XOTN(511,4XOTN(6)1/15XOTN(7)'94XOTN(8)114XOTN(9)1p
< 5XfiTSURFII4XOTBULKII4X,IHTCOPOWDELPW)
WRITE(6,8C)

C

C CALCULATION OF CONDITIONS AT BEGINNING CF FIRST INCREMENT.

C

C

C

P1=PIN-(DELPE+DELPF)/144.0

T81=TIN

INC=1

CALCULATION 1-.2F AXIAL Ci2OPOINATE OF CENTER OF FIRST INCREMENT.

LC= h /2.4- DELL /2.O

C INITIAL GUESS OF AVERAGE FUEL ANU MODERATOR TEMPERATURES FUR

THE FIRST INCREMENT.THESE ARE USED TO EVALUATE THE THERMAL-

CONDUCTIVITIES IN THE CALCULATION OF THE MODERATOR TEMPERATURE

C DISTRIBUTION.

TMAV=TiN-1.30(,.0*COS(PPZC/NF)

TFOAV=TIN+500.0*COS(PI*LC/HE)



C

C CALCULATION OF AVERAGE BULK TEMPERATURE FOR INCREMENT.

85 QTPAV=QTPC*COSIPWC/HEI

TBi=TBI+QTPAV*P1*DFU**2.0*DELL/4.0/MDOT/1.24800*2.0

C THE MULTIPLICATION BY 2 IN THE PREVIOUS CALCULATION IS REQUIRED
C BECAUSE TWICE THE ENERGY GENERATED IN ONE FUEL ROD ENTERS EACH
C COOLANT CHANNEL.

C

TBAV7(TBI+T82)/2.0

C

C CALCULATION OF PRESSURE DROP AND EXIT PRESSURE FOR INCREMENT.
C

RHO=P1*144.0/ITBAV+460.0)/386.0

UB=GIN/RHO/3600.0

RETUBWO*RHO/VISITBAW36004
F220.184/RE**0,2

DELPF=F*DELORHO*U8**2/00/24/32.2
P2 =PI -DELPF /144.0

C

C CALCULATION OF HEAT TRANSFER COEFFICIENT FOR INCREMENT.

C

PR=1,248*VIS(TBAVUKBUTBAVI

NU=0.023*RE**0.8*PR**0.4

HTC=NU*KBCITBAVI/DCO

C

C CALCULATION OF TEMPERATURE DISTRIBUTION IN GRAPHITE MODERATOR.
C

C

C

C OBTAINING THE BEST GUESSES FOR AVERAGE FUEL AND MODERATOR



TEMPERATURES FOR FINITt-OIFFERENCE CALCULATION JF MODERATOR

TEMPERATURE DISTRIBUT IUN.

IFIINC.EQ.li GO TO 95

TMAV=TBAV+(TMAV-TbAV)*CTPAV/OPiLU

TFJAV=TEAVWFOAV-T6AV1' ./PAV/OPCLO

95 RATIO=KF0(TFOAVIAMUTMAV)

CALCULATING THE MAIk 01A6UNAL COEFFICIENTS FOR THE COEFFICIENT

C MATRIX OF THE NODAL EQUATIONS.

C

SI=S14+S15+22M+RATIO*512F

52:526+S25+SI2M+512WATIO+523M+RATIO*S23F

53=S36+S37+S230RATIO*523F

S4=5144.S45

55:545+254.525+556+558

S6=S56+S26+536+S67+569+S68

S7 =S37+567+S79+PI*DCO*hTC/(24.0*00(TMAV))

58=558+568+589

S9=S89+S65 +S79+IPI*DCO*HTC/(24.0KMO(TMAV)))

SETTING UP THE CLEFFICICNT MATRIX FGR SIMQ SOLUTION OF NODAL -

C EQUATIONS.

C

DO 100 1=1,9

1t)) B(I)=0.0

DO 105 1=11E1

103 AI I) =0.0

A(11=-S1

A(10)=1S12M+RATIOS12F)

A(28)=S14

A(371=515

1.n6



A(1)= A(10)
A(11)=-S2
A(20)=(523M+RATIO*523F)
A(38)=525
A(47)=526
A(12)=A(201
A(48)=536
A(57)=S37
AI21)=-S3
A(4)=514
A(40)=545
A(31)=-54
A(5)=515
A(14)=525
A(50)=S56
A(68)=558
A(41)=-S5
A(32)=545
A(42)=556
A115)=526
A(24)=S36
A(60)=567
A(78) =569
A(69)=168
A(511=-56
A(25)=537
A(52)=567
A(79)=579
A(61)=-S7
A(71)=-S8
A(441=558
A(53)=S68

167



Al80)=S89

A(81)=Si

A(72)=Sd9

A(541=569

A(63)=S79

b(11=QTPAOYMFU*;2/(9u.;:,=,10U(TVA0)

b(2)=4.O*6(11

B(3)=8(1)

8(7)=P14000 ;HTOTBAV/(24.0;.'KPLATMAVI)

B(91=8(71

NNN=9

KKS =U

C

C USING SIN TO OBTAIN SOLUTION OF NUDAL EQUATIONS.

CALL SIMQ(A,B,NNN,KKS)

DO 110 1=1,9

11) T(I)=8(1)

C

C CALCULATION OF AVERAGE TEMPERATURE AT SURFACES 3F FUEL AND

i. COOLANT FOR INCREMENT.

C

TF=IT(1)+2.0*T(T(3))/4.J
TSAV=IT(7)+T(C))/2.0

1. CALCULATIGN OF TEMPERATUkb AT CENTER OF FUEL FUR INCRtMLNT. A%

ITERATION TECHNIQUE 1.) USLO TO OBTAIN FUEL THERMAL CONDUCTIVITY

WITHIN 2%.

C

KFJ1=KFU(TF)

115 TO=TF+QTPAV*OFU**2.0/16.3/KFUI

TFAVS=UF+TC1/2.0
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KFU2=KFU(TFAVS)

ERR=ABS(IKFU1-KFU2)/KFU2)

IFIERR-0.02 )125,1259120

120 KFU1=KFU2

GU TO 115

C

SAVING VALUES OF THERMAL CONDUCTIVITIES FOR LATER COMPARISONS.

C

125 COMPA1=KFL(TFOAV)

COMPA2=KMO(TMAV)

C

CHECK TO DETERMINE IF CURRECT MODERATOR AND FUEL THERMAL-

CONDUCTIVITIES WERE USED IN MODERATOR FINITE-DIFFERENCE

C CALCULATIONS.IF NOT,AN ITERATION ON THE AVERAGE THERMAL-

CONDUCTIVITIES IS PERFORMED.

C

TFOAV=3.0/8.0*T0+5.0/8.0*TF

TMAMT(1)44(2)41(31014)+T(5)+T(6)+T(7)+T(8) +T(9))/9.0
RAT1=ABSI(COMPA1-.KFU(TFOAV))/COMPAI)

RAT2=A8SI(COMPA2y..KMO(TMAV))/COMPA2I

IFIRATLLE.0.02.AND.RAI2.LE.0.021 GO TO 130
GO TO 95

C

C CALCULATION OF FUEL TEMPERATURE AT 1/4, 1/2, AND 3/4 FUEL RADII

C FOR INCREMENT.

C

130 T14=TO-QTPAV*DFU**2.2/16.0/KFU1/16.0

T12=TO..QTPAV*DFU**2/16.0/KFU1/4.0

T34=T&.QTPAV*DFU**2.0/16.0/KFU1/16.0*9.0

C

C

PRINTOUT OF RESULT FOR CALCULATION INCREMENT.
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C

WRITE(6,135) INCtiCITO,T1412,T34,TFOITSAV,TBAVIHTCOELPF

135 FORMAT(15X,12,7X,F7.3,2X,F6.1,4X,F6.113X,F6.1,3X,F6i1,4X,F6.1/

<20X,41,5(3X,F661)/15X,31F61,3X)plX,F6.1,213X,F6.1)14X,F6.2/)
IFIINC.EQ.11.0R.INC.EQ.23.0R.INC.EQ.35.0RINC.EQ.47/ WRITE(6155)

C

C CHECK TO SEE, IF CALCULATIONS HAVE BEEN COMPLETED FOR ENTIRE

C 'CORE.

C

IF( INC -50) 1401145,145

C

C SETTING CONDITIONS FOR BEGINNING OF NEXT CALCULATION INCREMENT.

C

140 INC=INC+1

ZC=ZCOELL
TB1=TB2

P1=P2

QTPOLD=QTPAV

C

C TRANSFERRING TO START CALCULATIONS FOR NEXT INCREMENT.

GO TO 85

C

C CALCULATION OF CORE EXIT CONDIIIONS OF COOLANT.

145 RH04241144.CMTB2+460.0)/386.0

UB:GIN/RHO/3600.0

RE=UB*DCO*kHO/VIS(TB2)*3603.L;

F=0.184/RE**0.2

DELPF:F*DELL*RHU*U8**2/DC0/2.'3/32.2*1C.0

DELPE=RHO*Ue**2/2.0/32.2

PEX:P2(DELPE+DELPF)/144.0
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1EX=TB2

C

C PRINTOUT OF CORE EXIT COOLANT CONDITIONS.

C

WRITE(6,75)

WRITE(6,150)

150 FORMAT( /,15X,'EXIT PRESSUREst10X0EXIT TEMPERATURE',/19X,

<'(PSIA)',18X,' (F)'/)

WRITE(6,155)PEX,TEX

155 FORMAT(18X,F6.1,18X,F6.1)

C

C CALCULATION OF AVERAGE POWER OF FUEL ROD IN KW/FT.

C PRINTOUT OF AVERAGE POWER.

C

POVL=QTPOSHE*OFU**2/2.0*SINIPI*H/2.0/HE)/H

POVL=POVL/3412

WRITE(6,160)POVL

160 FORMAT( / /15X,'POWER PER UNIT LENGTH (KW/FT) :',F6.2/////)

WRITE(6175)

WRITE(6,55)

STOP

END

C

C soolloosesoo**00ersoolloieseesesolosoollessollemosoogoolosessesoosilos0410111

C

C SUBROUTINE SIMQ

C

C PURPOSE

C OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,

C AX=B

C

G USAGE
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CALL SIMQ(A,B,N,KS)

DESCRIPTION OF PARAMETERS

C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE

C DESTROYED IN THE COMPUTATION. THE SIZE JF MATRIX A IS

N BY N.

C B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE

REPLACED BY FINAL SOLUTION VALUES, VECTOR X.

C N NUMBER OF EQUATENS AND VARIABLES. N MUST BE .GT. ONE.

KS - OUTPUT DIGIT

0 FOR A NORMAL SOLUTION

C 1 FOR A SINGULAR SET OF EQUATIONS

C

REMARKS

MATRIX A MUST BE GENERAL.

C IF MATRIX IS SINGULAR SOLUTION VALUES ARE MEANINGLESS.

AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX

INVERSIONAMINV) AND MATRIX PRODUCT (GMPRD).

C

C SUBROUTINES ANO FUNCTION SUBPROGRAMS REQUIRED

NONE

C

C METHOD

C METHOD OF SOLUTION IS KY ELIMINATION USING LARGEST PIVOTAL

DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING

RCM WHEN NECESSIMY Ti7 AVCID DIVISION BY ZERO OR SMALL

C ELEMENTS.

C THE FORWARD SOLUTION TO CtTAIN VARIABLE N IS DONE IN

C N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS

C CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION

C VALUES ARE DEVELOPED IN VLOOk B, hITH VARIABLE 1 IN BM:

VARIABLE 2 IN B(211........, VARIABLE N IN BIN).
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C IF M) PIVOT CAN BE FOUND EXCEEDING A TULEONCE OF 0.0,

C THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS

TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.

C

..................................................................

C

SUBRUUTINE SIMQ(A,B,N,KS)

DIMENSION A(81),6(9)

C

C FORWARD SOLUTION

C

TOL=0.0

KS=0

JJ = -N

DO 65 J=1,N

JY=J+I

JJ=JJ0101

BIGA=0

IT=JJ.1

DO 30 I2J9N

C

C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

C

1J =IT +I

IF(ABS(BIGA)ABS(A(IJ))) 20,30,30

20 BIGA=A(IJ)

IMAX=I

30 CONTINUE

C

C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

C

IF(ABSIBIGA)-TGLI 35,35,40



35 KS=1

RETURN

C

C INTERCHANGE ROWS IF NECESSARY

C

40 11=J+N*(J-2)

IT=IMAX-J

DO 50 K=J1N

I1=11+N

12=11+IT

SAVE -A(I1)

AtI1)=A(121

A(I2) =SAVE

C

DIVIDE EQUATION BY LEADING CLEFFICIENT

C

50 A(I1) =A(I1) /RIGA

SAVE=B(IMAX)

B(IMAX) =B(J)

BIJI=SAVE/BIGA

C

ELIMINATE NEXT VARIABLE

C

1F(J-h) 55170,55

55 IQS:N*(J-11

DO 65 IX=JYIN

IXJ=ICS+IX

1T=J-IX

DO 60 JX=JYIN

IXJX=h*(JX-1)+IX

JJX=IXJX+1T

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
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u5 BIIX)=BIIX)-(b(J)*A(IXJ))

C

C BACK SCLUTION

C

70 NY=N-1

IT=N*N

DO 80 J=1,NY

IA=IT-J

Iti=N-J

IC=N

DO 80 K=10
8(I8)=8(IBl-AIIWBCICI

IA=IA-N

80 IC =IC -1

RETURN

END
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7.0 Problems

1. By performing an energy balance on a differential element with sides

dx, dy, and dz, derive the steady state heat conduction equation in

Cartesian coordinates.

2. Derive the steady state heat conduction equation in cylindrical

coordinates.

3. DeVelop an expression for the temperature distribution in a long,

thin, hollow cylindrical fuel rod with inner radius ri, outer radius

r0'
and volumetric thermal source strength q'''. Assume that the

inner surface is insulated and at temperature Ti.

4. A long, thin, hollow cylindrical fuel rod with volumetric thermal

source strength q''' is cooled on both the inner and outer surfaces

(r = ri and r = ro surfaces) such that the surface temperatures are

Ti and T
o'

respectively. Derive an expression for the location of

the maximum temperature in the fuel.

5. Calculate the ratio of peak power to average power for a fuel rod of

constant cross section assuming that the volumetric thermal source

strength varies as q"' = cos (711/He) and that the extrapolation

length is 10% of the core height. Compare this ratio to that for the

case where the extrapolation length is assumed to be zero.

6. Develop an expression for the steady state heat transfer rate through

a cylindrical shell of inside radius ri and outside radius r with

no internal energy generation. Your expression should contain only

the outside surface temperature T, the inside surface temperature

Ti, the thermal conductivity k, the length of the shell AL, ri, and

ro.

7. A HTGR fuel rod is 0.6 in. in diameter and 30 in. long. The surface

temperature of the rod is at 1200 F and he volumetric. thermal source

strength of the rod is 8 x 106 Btu/hr-fe. The thermal conductivity

is 12.0 Btu/hr-ft-F. Determine the temperature and heat transfer

rate at r = 0.2 in.

8. The fuel rod in Problem 7 fits inside a fuel hole that is 0.630 in.

in diameter. The 0.030 in. diametrical gap between the fuel rod and

moderator is filled with helium gas. Assuming that the heat transfer

through the helium is by molecular conduction only (kHe = 0.140

Btu/hr-ft-F) determine the temperature difference between the fuel

and moderator surfaces.

9. Develop the steady state finite-difference nodal equation for node 2

of Figure 2.

10. Develop the steady state finite-difference nodal equation for node 4

of Figure 2.
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11. Develop the steady state finite-difference nodal equation for node 10
of Figure 2.

12. Develop the steady state finite-difference nodal equation for node E
of Figure. 3.

13. Develop the steady state finite-difference nodal equation for node H
of Figure 3.

14. Develop the steady state finite-difference nodal equation for node J
of Figure 3.

15. A 25 foot long HTGR core contains 0.520 in. diameter coolant holes.
The average conditions in the core are 500 psia and 1000 F. The mass
velocity of the helium is 2.0 x 105 lbm/hr-ft2. Determine the pres-
sure drop through the core.

16. Determine the effect on pressure drop of a 20% decrease in coolant
hole diameter for the core in Problem 15. Assume the coolant condi,-
tions and mass velocity remain the same.

17. Determine the heat transfer coefficient for the flow conditions of
Problem 15.

18. A HTGR core contains 0.75 in. diameter coolant holes through which
helium flows. At a particular location in the core the pressure is
500 psia, the temperature is 900 F and the coolant velocity is 216
ft/sec. Determine the heat transfer coefficient.

19. In a HTGR core the volumetric thermal source strength varies
axially as q''' (Z) = qn '' ' cos (TrZ/He). The energy generated in
each two fuel rods is removed by a coolant channel which has a mass
flow rate of m and an inlet temperature of T. Designate the fuel
diameter as D

f
and the coolant hole diameter as D . Develop an

expression for the axial variation of the temperAure at the surface
of the moderator. Your expression should contain only T

in
, q

D
f'

D
c'

H, H
e'

m, C
p'

h, and Z.

20. From the expression developed in Problem 19 determine the axial lo-
cation where the moderator surface temperature (moderator-coolant
interface) is a maximum.

21. A 4000 Mw HTGR contains 5400 right hexagonal prism fuel elements
each 14.2 in. across the flats and 31.2 in. long. The fuel elements
are stacked 8 high in the core. The uranium-thorium fuel' in carbide
form is contained in 0.62 in. diameter fuel holes. The core is
cooled by the downward flow of helium through 0.825 in. diameter
coolant holes. The helium enters at 600 F, psia, and with an
average mass velocity of 8.3 x 10

4
lbm/hr-ft . Each fuel element

assembly contains 132 fuel holes. The spacing between the fuel and
coolant holes in the element is 1.112 in. The thermal source
strength varies as q''' = go"' coa 1TZ/He and He = 1.1H. Determine

1 8



114

the maximum fuel temperature and the maximum moderator temperature

in the core.

22. Determine the % increase in power that would produce a 1800 F
maximum fuel temperature for the 'core and flow conditions of Problem

21.

23. Determine the % reduction in core flow that would produce a 1800 F

maximum fuel temperature for the core and flow conditions of Problem
21.

24. A 2000 Mw (t) HTGR contains 2400 right hexagonal prism fuel assemblies
stacked 10 elements high to form the core. Each fuel element is
12 in. across the flats and 30 in. high. In each element the uranium-
thorium fuel in carbide form is contained in 150 fuel holes each 0.48
in. in diameter. The core is cooled by the downward flow of helium
through 0.56 in. coolant holes. The helium enters at 700 F, 600 psia,

and with an average velocity of 300 ft/sec. The spacing between the

fuel and coolant holes is 0.80 in. The axial power distribution is
a truncated cosine function with an extrapolation length of 16 in.

Determine the location and magnitude of the maximum fuel, moderator,
and coolant temperatures.

25. The coolant holes in one of the fuel element assembly columns of the
core in Problem 24 are undersized by 30%. Determine the % increase

in maximum fuel, moderator, and coolant temperatures over those for
the normal reactor fuel element assemblies.

26. Determine the % overpower that leads to a maximum fuel temperature
of 1800 F for the core and flow conditions of Problem 24.


